楊樹軍,張 曼,曾盼文,張寅君,張 璐,田 霖
液壓機械無級傳動全功率換段過程排量比調節模型
楊樹軍1,張 曼1,曾盼文2,張寅君1,張 璐1,田 霖1
(1. 燕山大學車輛與能源學院,秦皇島 066004;2. 江麓機電集團有限公司,湘潭 411199)
為了解決液壓機械換段過程中存在的轉速波動和瞬時動力中斷等問題,該文以兩離合器結合重疊的五階段全功率動力換段方法為基礎,分析了液壓機械全功率換段過程變排量液壓元件排量比調節規律。以某等差兩段式液壓機械為研究對象,建立了液壓機械全功率換段過程變排量液壓元件排量比調節模型,通過仿真分析和全功率換段過程試驗,獲得了換段過程液壓回路壓力從當前段到目標段隨排量比變化的動態響應過程。結果表明,排量比變化量的仿真與試驗結果基本一致,最大偏差為8.93%,驗證了模型的正確性;排量比調節模型能夠根據當前段狀態參量和目標段壓力預測出目標段排量值;階躍排量比調節規律能有效縮短液壓回路建壓時間,建壓時間為0.93 s,壓力波動量較小,為0.64 MPa;按階躍調節排量比至目標值,能在換段過程完成液壓回路高低壓側壓力平穩互換,換段前后輸出轉速幾乎無波動、轉矩連續傳遞。經增速機后的輸出轉矩為100和150 N·m時,換段時間分別為1.00和1.10 s,該轉矩的最大波動量分別為6.80和6.84 N·m,換段過程中功率連續且平穩傳遞。研究結果可為實現液壓機械無級傳動全功率換段控制及后續研究提供參考。
液壓機械;傳動;控制;無級傳動;全功率換段;排量調節
液壓機械無級傳動(hydro-mechanical variable transmission,HMT)是由液壓功率傳動機構和機械功率傳動機構復合而成的雙功率復合傳動形式。具有實現大功率無級調速,傳動效率高等突出優點,已經在軍用車輛、工程機械和拖拉機等大功率車輛上廣泛使用[1-3],成為了大功率車輛無級傳動系統的主要發展方向[4-6]。
Ali H Shaker和Berger Guenter對HMT傳動特性和控制方式等問題展開了深入系統的研究[7-8]。文獻[9-10]開展了關于液壓機械無級變速器控制技術的研究工作。文獻[11]開展了關于液壓機械傳動特性分析以及建模仿真等方面的研究工作。文獻[12]研制出了裝配在M2步兵車和M3偵察車上的HMPT-500系列液壓機械傳動裝置。其他學者和科研技術人員也都相繼在HMT各構型和控制領域開展了卓有成效的理論研究和產品研制工作[13]。
國內苑士華等帶領的科研團隊對液壓機械較早開展了研究,提出了相對完整的HMT參數設計和理論分析方法[14-16]。張明柱等研究了農用拖拉機多段液壓機械無級變速器[17-18]。郭占正等建立了液壓機械無級傳動模型和液壓路仿真模型[19]。魏超等開展了HMT段內速比跟蹤策略研究,可使發動機工作在最佳區域[20-21]。王光明等分析了液壓機械換段品質的影響因素[22-23]。朱鎮等仿真分析了分段式液壓機械變速器換擋策略,通過優化參數和換擋時序,提高換擋品質[24-25]。但以上換段研究均是在常規換段基礎上進行的,換段中離合器的分離與結合間存在一定的時間間隔或短時間的滑摩重疊,液壓傳動單元的壓力由負載被動產生,不能從根本上消除動力中斷和換段沖擊。胡紀濱等探究了換段過程中雙制動器結合重疊的可行性[26-27]。楊樹軍等分析了換段過程的影響因素,研究了換段控制方法及功率過渡特性,提出了五階段全功率換段方法[28-30]。全功率換段過程中,兩離合器結合重疊消除了常規換段過程的慣性相,通過調節排量比能主動實現液壓回路高低壓側互換達到目標段壓力。然而排量比調節的動態過程決定著液壓回路高低壓側互換的過程及換段時間,目前關于全功率換段過程中排量比調節規律的研究未見文獻報道。
本文建立了換段過程液壓回路容腔模型和變排量液壓元件排量調節模型,深入研究了全功率換段中排量調節特性對液壓回路動態建壓過程的影響規律,獲得了換段過程排量的調節值和有效縮短換段時間的排量比調節規律。
等差兩段式液壓機械無級傳動樣機結構簡圖如圖1所示。HMT工作在液壓段(H段)時,變排量液壓元件驅動定排量液壓元件,離合器H處于結合狀態,行星排1工作;液壓機械段(HM段)前半段時,定排量液壓元件驅動變排量液壓元件,離合器L處于結合狀態,行星排23工作,匯流機構將液壓流傳動機構與機械流傳動機構所傳遞的功率匯流輸出。
HMT全功率動力換段過程如圖2所示[31]。


換段過程中,兩離合器結合重疊,進入換段狀態,HMT各行星排、離合器和定排量液壓元件的轉矩存在如下關系:

求解式(1)可得HMT全功率換段過程的轉矩特性,如式(2)。

由式(2)可知,兩離合器結合重疊的換段過程中,閉式液壓回路高低側壓差變化,HMT當前段到目標段離合器的轉矩會發生改變。根據文獻[30],閉式液壓回路的壓力可通過調節變排量液壓元件排量比控制,實現轉矩轉移和功率過渡。

兩離合器結合重疊的換段過程中,定排量液壓元件轉速與變排量液壓元件的轉速之比為一個定值,液壓回路低壓側容腔壓力由補油壓力確定且保持恒定不變,高壓側容腔壓力的變化由進出容腔的油液流量決定,可表示為



圖3 HMT閉式液壓回路等效模型
Fig.3 HMT hydraulic circuit equivalent model
H段至HM段換段時下腔建壓,變排量液壓元件進油口和定排量液壓元件出油口的實際流量分別為


當HMT工作在H段至HM段換段后穩定階段時,變排量液壓元件和定排量液壓元件容積效率分別為







由式(2)、式(10)可得H段至HM段全功率換段過程轉矩轉移機理表達式。

H段換至HM段的換段過程中通過調節變排量液壓元件的排量比控制壓力動態變化過程,排量比按一定規律由當前值調節至目標值,使換段過程中閉式液壓回路的壓力從當前段狀態向目標段壓力過渡,控制轉矩從當前段離合器向目標段離合器轉移。
HM段至H段換段時上腔建壓,變排量液壓元件出油口和定排量液壓元件進油口的實際流量分別為


HMT工作在HM段至H段換段后穩定階段時,變排量液壓元件和定排量液壓元件容積效率分別為



程慧(2013)等采取實證研究的方法,通過對證券市場近年數據建模研究顯示,研發支出相關會計規定的修訂,提升了企業在年報對于研發支出的發布要求然而對于細節實施方面,如研發項目信息公開的表現形式,明細增減變動,研發資金的現金流等仍欠缺行業認可和統一的披露發方法。



將式(17)簡化,得到HM段換至H段閉式液壓回路壓力差與排量比的關系為

由式(2)、式(18)得HM段至H段全功率換段過程轉矩轉移機理表達式。

HM段換至H段的換段過程中通過調節變排量液壓元件的排量比控制壓力動態變化過程,調節排量比至目標值時,HMT從當前段過渡至目標段,從而實現轉矩平穩轉移。
為了分析全動率換段過程排量比特性,本文建立的HMT全功率換段過程閉式液壓回路容腔模型和排量比調節模型的參數如表1。

表1 液壓回路仿真模型參數 Table 1 Parameters of simulation model for hydraulic circuit
排量比調節分別采用階躍和線性2種調節,對應的液壓回路壓力響應過程如圖4所示。

注:、分別表示液壓回路高低壓側壓力,MPa。下同。
圖4a是H段換向HM段壓力動態響應過程,H段壓力為11.07 MPa,排量比從0.972調節為0.804,調節后的HM段壓力為9.07 MPa。排量比階躍調節時,建壓所需時間為0.93 s,壓力波動量為0.39 MPa,相對偏差為4.30%;排量比線性調節時,建壓所需時間為1.68 s,壓力波動量為0.19 MPa,相對偏差為2.09%。圖4b是HM段換向H段壓力動態響應過程,排量比從0.804調節為0.972,壓力從HM段9.07 MPa調節為H段11.11 MPa。排量比階躍調節的建壓時間為0.85 s,壓力波動量為0.64 MPa,相對偏差5.76%;排量比線性調節的建壓時間為1.63 s,壓力波動量為0.46 MPa,相對偏差為4.14%。
從建壓時間分析,排量比階躍調節明顯優于線性調節;從液壓回路壓力波動量看,線性調節優于階躍調節;與排量比線性調節相比,階躍調節有效減小了建壓時間,高壓側壓力波動量無明顯變化,為了減小換段時間,可采用排量比階躍調節。
為研究HMT全功率換段過程變排量液壓元件排量比調節特性,搭建了HMT全功率動力換段試驗臺架,試驗原理和實物照片如圖5所示。
試驗臺主體部分為洛陽凱邁機電的變速箱電封閉傳動試驗臺。HMT動力源為CJ250變頻電機(額定功率為250 kW),動力輸出端經轉速轉矩儀與HMT樣機輸入端相連接;HMT輸出端經增速機(增速比1∶3)、T40轉速轉矩儀(額定轉矩為1 000 N·m,轉矩精度為0.5%F.S)與加載裝置相連,加載裝置為CJ200電力測功機(額定功率為200 kW);試驗臺離合器潤滑控制油液由泵站提供,閉式液壓回路中所用油液與潤滑系統所用油液分開供給,并在定排量液壓元件輸出軸加裝轉速傳感器(OD9011-NPN),在液壓回路高低壓側油路加裝壓力傳感器(HDA3844-A-600,量程0~60 MPa,精度為0.2%F.S)、補油壓力傳感器、殼體溫度傳感器,離合器控制回路加裝壓力傳感器(JYB-K0-HAG,量程2.5 MPa,精度為0.5%F.S)和溫度傳感器(JWB23/2e/A,量程-50~150 ℃,精度為0.2%F.S)。試驗臺測控系統由試驗臺控制柜和HMT控制器組成。HMT控制器輸出兩路開關量控制離合器電磁閥,輸出2路比例電流(含顫振)驅動變排量液壓元件排量調節機構比例閥,并進行數據采集。比例閥電流從當前值階躍調節為目標值時,改變伺服閥兩端控制油壓,使伺服缸運動至目標位置,變量泵調節至目標排量。

a. HMT動力換段試驗臺原理圖 a. Schematic diagram of HMT power shifting test bench 1.試驗臺架測控系統 2.排量控制機構 3.控制油源 4.信號集成單元 5.增速機 6.轉速轉矩儀 7.電動機 8.測功機 9.液壓機械無級傳動 1.Control system of test bench 2.Displacement control mechanism 3.Control oil sources 4.Signals integration unit 5.Speed increaser 6.Speed and torque meter 7.Motor 8.Dynamometer 9.HMT b. 試驗臺架實物照片 b. Photograph of test bench
在給定轉速和轉矩的換段過程中,按調節規律調節排量,主動控制液壓回路高低壓側壓力互換,使HMT從當前段過渡到目標段。按上述方法,進行由H段向HM段、HM段向H段往復換段試驗,實時采集輸入輸出轉速、轉矩、定排量液壓元件轉速、變排量液壓元件排量比、液壓回路高低壓側壓力、補油溫度和離合器控制油壓等試驗參數,并與相同條件下的仿真結果進行對比分析,探究全功率換段的功率轉移機理及換段過程排量比調節的影響規律。
負載大小決定換段前后液壓回路的工作壓力和全功率換段過程的排量調節量,轉速影響HMT傳動效率,但這2個參數都不影響排量調節規律和功率轉移機理。裝備HMT的5 t裝載機,在典型工作工況(ZZJ/07B01-2017《土方機械輪胎式裝載機能效試驗及評價方法》)中,HMT換段時的發動機轉速范圍為800~1 200 r/min,液壓回路最高壓力為8~14 MPa,限于試驗臺條件,本文試驗時HMT輸入轉速選擇1 000 r/min,測功機加載轉矩選擇100和150 N·m,通過增速機后,液壓段壓力約為9和11 MPa,屬裝載機HMT的換段典型工況點,液壓回路試驗油溫80 ℃。由于試驗設備的限制,被試HMT和測功機間設置了增速機,轉速轉矩儀安裝在增速機之后,故本文所提及的“輸出轉矩”均為HMT經增速機后的輸出轉矩,即測功機的加載轉矩。
輸入轉速為1 000 r/min,輸出轉矩為100 N·m時,排量比階躍調節化下對應的液壓機械由H段向HM段和由HM段向H段的換段過程試驗與仿真結果如圖6、圖7所示。



a. 離合器壓力 a. Pressure of clutchb. 變排量液壓元件排量比 b. Displacement ratio of variable-displacement hydraulic component

a. 離合器壓力 a. Pressure of clutchb. 變排量液壓元件排量比 b. Displacement ratio of variable-displacement hydraulic component
輸入轉速1 000 r/min、輸出轉矩150 N·m,排量比階躍調節的換段過程試驗結果如圖8、圖9所示。H、L兩離合器結合重疊過程仍為2 s。

a. 離合器壓力 a. Pressure of clutchb. 變排量液壓元件排量比 b. Displacement ratio of variable -displacement hydraulic component

a. 離合器壓力 a. Pressure of clutchb. 變排量液壓元件排量比 b. Displacement ratio of variable -displacement hydraulic component
如圖8,試驗中排量比從0.985調至0.802(仿真值為0.972和0.803,試驗和仿真結果偏差為7.65%)時,液壓回路壓力從H段11.07 MPa調節為HM段9.13 MPa,建壓時間1.05 s,輸出轉速無波動,轉矩波動6.70 N·m,為輸出轉矩的4.50%;如圖9,排量比0.803調至0.988(仿真值為0.804和0.973,仿真和試驗結果偏差為8.65%)時,液壓回路壓力從HM段9.11 MPa調節為H段11.11 MPa,建壓時間1.10 s,轉矩波動6.84 N·m ,為輸出轉矩的4.60%。
圖6~圖9中換段試驗與仿真結果對比可知,換段過程排量比試驗結果變化量和仿真結果變化量最大偏差為8.93%,仿真和試驗結果基本一致,證明本文所建立的HMT全功率換段過程排量調節模型可以準確計算目標段排量值,能準確反映液壓回路高低壓側壓力互換過程。在兩離合器結合重疊過程中合理調節變排量液壓元件排量,能夠使轉矩在離合器間快速轉移,負載為100和150 N·m時,最大建壓時間分別為1.00和1.10 s,轉矩波動量最大分別為6.80和6.84 N·m,分別為輸出轉矩的6.80%和4.60%。
本文以HMT全功率換段為目標,開展了換段過程排量變化規律、液壓回路動態響應過程的理論分析和試驗研究,得到如下結論:
1)獲得全功率換段轉矩轉移機理表達式,閉式液壓回路的壓力可以通過調節排量比控制,改變閉式液壓回路壓力,使轉矩從當前段離合器向目標段離合器轉移。
2)對比排量比階躍和線性調節規律響應特性,階躍調節規律能有效減小建壓時間,換段時間為0.93 s,壓力波動量為0.64 MPa,與線性調節相比,高壓側壓力波動無明顯變化。為有效減小換段時間,可采用排量比階躍調節規律。
3)在相同工況下,從當前段到目標段排量調節量的仿真與試驗結果基本相同,偏差為8.93%,建壓時間基本一致,表明本文所建立的排量比調節模型能準確計算排量比目標值,并能準確反映建壓過程。
4)在當前段和目標段離合器結合重疊時,通過合理調節排量比控制液壓回路高低壓側壓力完成釋壓、建壓過程,能夠使轉矩在離合器間快速轉移,換段前后輸出轉速平穩無變化、轉矩連續傳遞。輸出轉矩為100和150 N·m時,建壓時間分別為1.00和1.10 s,轉矩波動量最大分別為6.80和6.84 N·m,分別為輸出轉矩的6.80%和4.60%,實現了全功率換段。
[1] 劉修驥.車輛傳動系統分析[M]. 北京:國防工業出版社,1998.
[2] Satyam R, Tewari V K, Mukhopadhyay S. Simulation of components of a power shuttle transmission system for an agricultural tractor[J]. Computers and Electronics in Agriculture, 2015, 3(6): 114-124.
[3] 李東民,黃德杰,李翠赟. 車用液壓機械無級變速器研究及應用[J]. 液壓與氣動,2016(9):44-48. Li Dongmin, Huang Dejie, Li Cuiyun. Study and application on hydro-mechanical variable transmission[J] Chinese Hydraulics & Pneumatics, 2016(9): 44-48. (in Chinese with English abstract)
[4] Michael Sprengel, Monika Ivantysynova. Recent development in a novel blended hydraulic hybrid transmission[R]. SAE Technical Paper 2014-01-23.
[5] Lloyd. High efficiency, hydro-mechanical passenger vehicle transmission using fixed displacement pump/motors and digital hydraulics[J]. SAE International Journal of Passenger Cars-Mechanical Systems. 2012, 5(2): 833-855.
[6] 王鐵軍. 工程機械上液壓機械傳動的應用探究[J]. 液壓與氣動,2012(6):61-63. Wang Tiejun. The application of the hydraulic mechanical transmission on the construction machine[J] Chinese Hydraulics & Pneumatics, 2012(6): 61-63. (in Chinese with English abstract)
[7] Ali H Shaker. Stufenlose Hydrostatische Koppelgetriebe fuer Kraftfahrzeuge[D]. Bochm: Ruhr Universitat, 1981.
[8] Berger Guenter. Automatische Stufenlos Wirkends Hudrostatisches Lastschaftgetriebe Fuer Kraftfahrzeuge[D]. Bochum: Ruhr Universitat, 1986.
[9] Cheong K L, Li P Y, Chase T R. Optimal design of power-split transmission for hydraulic hybrid passenger vehicles[C]// American Control Conference. IEEE, 2011: 3295-3300.
[10] Cheong K L, Du Z, Li P Y, et al. Hierarchical control strategy for a hybrid hydro-mechanical transmission (HMT) power-train[C]// American Control Conference. IEEE, 2014(6):4599-4604.
[11] Kumar R. A Power Management Strategy for Hybrid Output Coupled Power-Split Transmission to Minimize Fuel Consumption[D]. West Lafayette: Purdue University, 2010.
[12] 馬志遠. HMT車輛動力傳動綜合控制技術研究[D]. 北京:北京理工大學,2015. Ma Zhiyuan. Study on Power Driveline Integrated Control Technology of Vehicle Equipped with Hydro-Mechanical Continuously Variable Transmission[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese with English abstract)
[13] Tanelli M, Panzani G, Savaresi S M, et al. Transmission control for power-shift agricultural tractors: Design and end-of-line automatic tuning[J]. Mechatronics, 2011, 21(1): 285-297.
[14] 苑士華. 多段液壓機械雙流無級傳動的理論與試驗研究[D].北京:北京理工大學,1999. Yuan Shihua. Theoretical and Experimental Research of Multi-Range Hydro-Mechanical Double-Flow CVT[D]. Beijing: Beijing Institute of Technology, 1999. (in Chinese with English abstract)
[15] 苑士華,杜玖玉,胡紀濱,等. 兩段式分速匯矩式液壓機械傳動設計[J]. 農業工程學報,2008,24(11):109-113. Yuan Shihua, Du Jiuyu, Hu Jibin, et al. Design of two-rang input split hydrostatic mechanical transmission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 109-113. (in Chinese with English abstract)
[16] 杜玖玉,苑士華,胡紀濱,等. 兩段式分矩匯速式液壓機械傳動設計[J]. 農業工程學報,2009,25(4):86-94. Du Jiuyu, Yuan Shihua, Hu Jibin, et al. Design of two-rang torque split hydrostatic mechanical transmission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 86-94 (in Chinese with English abstract)
[17] 張明柱,周志立,徐立友,等. 農業拖拉機用多段液壓機械無級變速器設計[J]. 農業工程學報,2003,19(6):118-121. Zhang Mingzhu, Zhou Zhili, Xu Liyou, et al. Design of a multi-range hydrostatic mechanical transmission for farm tractors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 118-121. (in Chinese with English abstract)
[18] Zhang Mingzhu, Zhou Zhili, Xu Liyou. Efficiency analysis of an innovative multi-range hydro-mechanical continuously variable transmission[C]// International Conference on Automation and Logistics, 2009: 170-174.
[19] 郭占正,苑士華,荊崇波,等. 基于AMESim的液壓機械無級傳動換段過程建模與仿真[J]. 農業工程學報,2009,25(10):86-91. Guo Zhanzheng, Yuan Shihua, Jing Chongbo, et al. Modeling and simulation of shifting process in hydraulic machinery stepless transmission based on AMESim[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 86-91. (in Chinese with English abstract)
[20] 魏超,胡紀濱,荊崇波,等. HMT變速器速比跟蹤控制對發動機轉速的調節規律研究[J]. 北京理工大學學報,2012,32(5):455-459. Wei Chao, Hu Jibin, Jing Chongbo, et al. Reasearch of engine speed governing rule based on the speed ratio follow-up control of hydro-mechanical transmission[J]. Transactions of Beijing Institute of Technology, 2012, 32(5): 455-459. (in Chinese with English abstract)
[21] 魏超,馬志遠,尹旭峰,等. 液壓機械無級變速器換段沖擊影響因素研究[J]. 北京理工大學學報,2015,35(11):1122-1127. Wei Chao, Ma Zhiyuan, Yin Xufeng, et al. Research on the influencing factors of the range-shifting impact on HMT[J]. Transactions of Beijing Institute of Technology, 2015, 35(11): 1122-1127. (in Chinese with English abstract)
[22] 王光明,張曉輝,朱思洪,等. 拖拉機液壓功率分流無級變速器換段規律研究[J]. 農業機械學報,2015,46(10):7-15.Wang Guangming, Zhang Xiaohui, Zhu Sihong, et al. Shift performance of tractor hydraulic power-split continuously variable transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 7-15. (in Chinese with English abstract)
[23] 王光明. 拖拉機液壓機械無級變速箱的特性、控制與故障診斷研究[D]. 南京:南京農業大學,2014. Wang Guangming. Study on Characteristics, Control and Fault Diagnosis of Tractor Hydro-Mechanical CVT[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract)
[24] 朱鎮,高翔,潘道遠,等. 液壓機械無級變速器換擋控制策略研究[J]. 機械科學與技術,2017,36(4):527-534. Zhu Zhen, Gao Xiang, Pan Daoyuan, et al. A shifting control strategy for hydro-mechanical continuously variable transmission[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 527-534. (in Chinese with English abstract)
[25] 朱鎮,陳龍,曹磊磊,等. 液壓機械無級變速器換擋品質因素分析[J]. 機械設計,2018,35(1):39-45. Zhu Zhen, Chen Long, Cao Leilei, et al. Analysis on the shift quality of hydro-mechanical continuously variable transmission[J]. Journal of Machine Design, 2018, 35(1): 39-45. (in Chinese with English abstract)
[26] 胡紀濱,魏超,杜玖玉,等. 液壓機械無級變速器速比跟蹤控制系統研究[J]. 北京理工大學學報,2008,28(6):481-485. Hu Jibin, Wei Chao, Du Jiuyu, et al. A study on the speed ratio follow-up control system of hydro-mechanical transmission[J]. Transactions of Beijing Institute of Technology, 2008, 28(6): 481-485. (in Chinese with English abstract)
[27] Hu Jibin, Wei Chao, Yuan Shihua, et al. Characteristics on hydro-mechanical transmission in power shift process[J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 50-56.
[28] 楊樹軍,焦曉娟,鮑永,等. 油液含氣量對液壓機械換段性能的影響[J]. 機械工程學報,2015,51(14):122-130. Yang Shujun, Jiao Xiaojuan, Bao Yong, et al. Fluid air content affecting the power shift performance of the hydro-mechanical variable transmission[J]. Journal of Mechanical Engineering, 2015, 51(14): 122-130. (in Chinese with English abstract)
[29] Yang Shujun, Bao Yong, Tang Xianzhi, et al. Integrated control of hydromechanical variable transmissions[J]. Mathematical Problems in Engineering, 2015(7): 1-11.
[30] 楊樹軍,鮑永,范程遠. 液壓機械全功率換段方法及功率過渡特性[J]. 農業工程學報,2018,34(5):63-72. Yang Shujun, Bao Yong, Fan Chengyuan. Full power shift method of hydro-mechanical transmission and power transition characterstics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 63-72. (in Chinese with English abstract)
[31] 楊樹軍,鮑永,楊得青,等. 液壓機械無級傳動全功率動力換段控制方法,201610656305.7[P]. 2016-12-21.
Model of regulating displacement ratio in full power shifting process of hydro-mechanical variable transmission
Yang Shujun1, Zhang Man1, Zeng Panwen2, Zhang Yinjun1, Zhang Lu1, Tian Lin1
(1.,,066004,; 2.,,411199,)
Hydro-mechanical variable transmission (HMT) is a kind of double power flow transmission system constituted by hydraulic branch and mechanical branch in parallel. HMT has the ability to realize high-power CVT and high transmission efficiency, and is suitable for high-power automobiles. In general power shift process, there are load reversal in hydraulic transmission unit, power flow reversal in hydraulic branch, and function interchange in hydraulic components. At the same time, the speed of fixed displacement hydraulic component changes abruptly, and there is a short time power interruption. To solve the problems of speed fluctuation and power interruption in power shift, based on the five-stage full power shift method by overlapping the double clutches, the displacement regulating law of variable displacement hydraulic component is studied in this paper. An arithmetic type two-range HMT is taken as the research object, and the pressure responses to different displacement regulation are analyzed. The torque characteristic equation in full power shift is derived. The cavity model of closed hydraulic circuit is established, in which the closed hydraulic circuit is simplified to two cavities. Considering the influence of the volumetric efficiency of the hydraulic transmission unit, the mathematical model of the displacement ratio regulation of variable displacement hydraulic component is derived. The step change and linear change of displacement ratio are adopted respectively, and the pressure response is obtained by simulation. The results show that the regulation law of displacement ratio has a great influence on the time of pressure building-up and pressure fluctuation. The step change of displacement ratio can effectively reduce the time of pressure building-up, and there is no obvious increase of pressure fluctuation compared with that of the linear change. The power shift time is 0.93 s and pressure fluctuation is 0.64 MPa. In order to reduce the power shift time, the step change of displacement ratio could be adopted. Through the displacement regulation characteristic test of HMT in full power shift process, the pressure response is obtained. The results show that the simulation results of displacement ratio change are in accordance with the test results, and the maximum deviation is 8.93% under the same working conditions. Based on the state parameters of current range and the target range pressure, the mathematical model of the displacement ratio regulation proposed in this paper can predict the displacement ratio target value, and accurately describe the pressure interchange between the high and low pressure circuits. During the double clutches overlapping, the displacement ratio is adjusted to the target value. The pressure interchange between the high and low pressure circuits can be completed in the full power shift process, and the torque is transferred from current clutch to target clutch. The output speed remains unchanged, and the output torque is continuous. When the output torque after speed increaser is 100 and 150 N·m, the power shift time is 1.00 and 1.10 s respectively, it’s the maximum fluctuation is 6.80 and 6.84 N·m respectively. The problems such as speed fluctuation and power interruption in the shift process are solved, this study provides a reference for the realization of HMT full power shift control and subsequent research.
hydro-mechanical; transmission; control; variable transmission; full power shift;displacement regulation
10.11975/j.issn.1002-6819.2019.13.007
U463.2
A
1002-6819(2019)-13-0064-11
2019-01-25
2019-03-03
國家自然基金面上項目(51675462,51175449);河北省高校科技支撐項目(ZD2016012)
楊樹軍,博士,教授,主要從事車輛新型傳動及其控制技術研究。Email:ysj@ysu.edu.cn
楊樹軍,張 曼,曾盼文,張寅君,張 璐,田 霖. 液壓機械無級傳動全功率換段過程排量比調節模型[J]. 農業工程學報,2019,35(13):64-73. doi:10.11975/j.issn.1002-6819.2019.13.007 http://www.tcsae.org
Yang Shujun, Zhang Man, Zeng Panwen, Zhang Yinjun, Zhang Lu, Tian Lin. Model of regulating displacement ratio in full power shifting process of hydro-mechanical variable transmission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 64-73. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.007 http://www.tcsae.org