999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

模擬降雨條件下開挖面土壤侵蝕測算模型研究

2019-09-10 05:40:02孫蓓潘曉穎李建明
人民長江 2019年1期
關鍵詞:工程模型

孫蓓 潘曉穎 李建明

摘要:為科學治理工程開挖坡面水土流失問題,采用野外人工模擬降雨試驗,設計了5種雨強(30,60,90,120,150 mm/h)和3種坡度(10°,20°,30°),系統分析了不同情景下雨強、坡度、徑流率、徑流流速、水流剪切力及水流功率同坡面剝蝕率之間的關系。結果表明:工程開挖坡面剝蝕率?Di與坡度S相關性不顯著(p>0.05),與雨強I、坡度和雨強的交互作用(I×S )呈極顯著相關(p<0.01)?;采用3種常用的細溝間侵蝕模型來計算工程開挖坡面土壤剝蝕率,就擬合效果而言,冪函數型坡度因子指標更適用于工程開挖坡面土壤剝蝕率的計算;采用徑流流速、水流剪切力和水流功率為代表的水動力學參數來計算土壤剝蝕率,就擬合效果而言,水流功率是描述其細溝間侵蝕動力過程的最理想水力參數。研究成果可為建立工程開挖坡面水土流失量預測模型提供技術參數和依據。

關?鍵?詞:工程開挖面; 人工模擬降雨; 水動力學參數; 細溝間侵蝕

中圖法分類號:S157?文獻標志碼: ADOI:10.16232/j.cnki.1001-4179.2019.01.008

隨著我國大型水利水電、礦山開采、城鎮建設、農林開發、石油化工和交通運輸等工程建設項目快速推進,工程開發建設過程中破壞植被、擾動地表、堆棄渣土等引發的人為水土流失已經成為最嚴重的生態環境問題之一,給區域經濟建設可持續發展帶來巨大挑戰。據統計,“十五”期間,我國建設項目擾動土地面積達到552.8萬hm2,其中分布在山地與丘陵區的占?72.1%?,每年新增的水土流失面積超過150萬hm2,增加的水土流失量超過3億t。“十一五”期間,全國生產建設項目產生的水土流失面積較“十五”增加?11.5%[1]。

工程建設帶來的人為水土流失問題引起了國內外學者的關注,目前大多數研究集中地礦產開采及道路建設所產生的松散堆積物的侵蝕問題。開發建設過程中擾動地表,破壞植被改變了原地貌的土壤侵蝕分布規律,水土流失強度遠高于自然侵蝕,Lal指出道路施工形成的裸露坡面[2],加劇了土壤侵蝕和自然沉積過程。Nyssen研究發現道路排水方式改變了坡面地表徑流路徑[3],在坡下易形成侵蝕溝。道路工程建設對地表的擾動,改變了天然坡面固有的入滲、產流等水文過程,土壤流失量呈倍數增長。王治國等研究發現在黃土區露天礦排土場[4],原地貌已完全破壞,排土場剝離的巖土呈松散狀,巖土的分散、搬運、沉積規律與天然黃土迥然不同,形成了獨特的巖土侵蝕。孫虎等通過人工降雨試驗[5],研究發現黃土高原地區棄土坡面的土壤流失量是裸露撂荒坡面的10.76~12.23倍。

在流失量預測方面,現有模型主要包括機理模型和經驗統計模型兩類。以WEPP[6]、EUROSEM[7]和ANSWERS[8]為代表的機理模型,各類模型參數計算復雜,且都有一定的限制條件,實際操作中工程技術人員難以快速估算土壤流失量。經驗統計模型因其結構清晰、形式簡單而被廣泛應用于估算坡面土壤流失。許多學者以坡度、雨強、流量等參數估算坡面細溝間土壤流失量。Cao 等提出黃土高原地區道路邊坡侵蝕速率與降雨強度、坡度和地表徑流率呈冪函數關系[9]。程冬兵等采用RUSLE模型結構[10],結合野外徑流小區實測數據,構建了開挖面次降雨侵蝕模型。此外,也有學者以徑流水動力學參數估算坡面土壤流失量,Fox等[11]和Wu等[12]認為徑流流速與坡面土壤流失量直接相關。徑流功率和徑流切應力也常被用于估算坡面土壤流失量[13-14]。工程開挖坡面土壤容重大、緊實度高、坡度較陡,從而致使其土壤流失過程與天然坡面存在較大差異。在侵蝕性降雨條件下,工程開挖邊坡水流沿程不斷有質量源的匯入,徑流時空變化明顯,且下墊面土壤孔隙度較低,入滲能力較差,比天然坡面情況更加復雜。

綜上所述,關于工程建設造成的人為水土流失問題,已取得一定的研究成果,但目前關于工程開挖面水土流失特性及其侵蝕機理的研究還較少,開挖坡面土壤侵蝕量預測模型研究方面還處于起步階段[15]。本次研究通過野外人工降雨試驗方法,以工程開挖坡面為研究對象,分析侵蝕性降雨條件下工程開挖坡面細溝間侵蝕特性及其流失量預測,以期為工程建設開挖造成的人為水土流失量預測及控制提供理論依據。

1?材料與方法

1.1?實驗設計與觀測

本次試驗研究地點為湖南省新化縣婁新高速公路開挖邊坡,選取3種坡度(10°,20°和30°),開挖邊坡小區按簡易小區設計,小區長3 m,寬1 m,在小區四周開槽,邊槽深度達基巖處,槽壁采用厚度為2 mm的不銹鋼板制造而成,以切斷小區內外徑流交換的通道,在小區下端插入一“V”型集流槽,通過集流槽連接到徑流收集桶,以收集地表徑流,其結構如圖1所示。

試驗采用長江科學院水土保持研究所可移動水土流失實驗系統的下噴搖擺式模擬降雨器,降雨高度為2.5 m,降雨均勻度為85%,有效降雨面積約為2 m×3 m,模擬雨強范圍為20~170 mm/h,模擬降雨近似天然降雨。綜合考慮試驗地點發生侵蝕性降雨的范圍和試驗目的,最終設計降雨強度分別為30,60,90,120,150 mm/h進行組合試驗。本次試驗以開挖坡面細溝間侵蝕過程為主要研究對象,當開挖坡面出現明顯細溝時,即停止試驗。

野外調查公路開挖坡面土壤容重為1.54~1.58 g/cm3,試驗小區平均容重為1.56±0.21 g/cm3,平均含水率17.6%±0.18%。開挖面坡度在10°~70°之間,其中40°~70°占19%,10°~40°占75%,<10°占6%;土壤容重采用環刀法測定;對采集的土樣進行顆粒篩分,發現開挖坡面土壤以>1~2 mm土壤顆粒為主,質地較粗,土壤(開挖面擾動土)基本性質見表1。

1.2?試驗過程

每次試驗開始前都使用遮雨布遮蓋小區,在小區周邊擺設雨量筒對雨強進行率定,直至降雨強度達到試驗要求,在開挖面上采集土樣,測定土壤前期含水量,當重復試驗的土壤含水量出現較大差異時,則預先降一場小雨后靜置24 h,以消除土壤含水量的影響。實驗開始至坡面完全產流,量測出口處的流量和含沙量過程并記錄時間。試驗過程中,基于記錄的水流溫度來計算水流黏滯系數,同時記錄人員要準備兩塊電子表,一塊用于記錄降雨總時間,另一塊用于坡面產流后控制采樣人員的采樣時間。取樣時間間隔確定為產流初期每1 min一個樣,3~7 min每2 min取一個樣,7~10 min每3 min取一個樣,10 min后每隔5 min取一個樣。當坡面出現明顯細溝時,即停止試驗。采用烘干法測量各樣品中的泥沙含量。表面流速采用KMnO4顏料示蹤法測定,分上、中、下3個測量斷面測定流速,當人為操作造成的測量值過大或過小時,則舍去異常值重新測量。每次試驗重復2次,以保證試驗精度,試驗結束后重新布置新小區進行試驗。本次研究共設計3×5×2=30場試驗。

1.3?數據分析方法

(1) 地表徑流流速(?V?)。在3個觀測斷面采用KMnO4溶液及電子秒表測定通過1 m測距所需的時間,測得表面最大流速,取其平均值,乘以校正系數?0.67?得到地表徑流平均流速[16],m/s。

(2) 平均水深(h)。本次試驗過程中以觀測開挖坡面細溝間侵蝕過程為主,水深較小,難以直接測定,故采用式(1)進行計算[16]:

h= QV·B·t (1)

式中,h為坡面平均水深,m;Q為地表徑流流量,m3;B為坡面過水斷面寬度,m;t為時間,s。

(3) 水動力學參數計算。本文涉及的水動力學參數為徑流切應力τ[17]和水流功率w[18],其計算公式如下:

τ=ρghJ(2)

w=τV(3)

式中,ρ為渾水密度,kg/m3;g為重力加速度,9.8m/s2;J為水力坡度,計算時可用坡度的正弦值近似代替。

(4) 土壤剝蝕率?(Di)?為單位時間單位面積內地表徑流搬運土壤的質量,kg/(s·m2),其計算公式如下:

Di= MsA·t (4)

式中,Ms為t(s)時段內坡面土壤流失量,kg,由徑流泥沙樣獲取;A為試驗小區面積,m2。

(5) 細溝間侵蝕量預測模型。本文采用了3種常用的坡面細溝間侵蝕量統計模型,以研究其在工程開挖面細溝間侵蝕量預測的適用性。

模型1(Model 1)采用WEPP細溝間侵蝕方程[19]:

Di=KiQSfI(5)

式中,Ki為細溝間可蝕性因子,kg·s/m4;Q為平均徑流強度,m/s;Sf為坡度因子,Sf=1.05-0.85e?-4sinθ?,θ為試驗小區坡度;I為雨強,m/s。

模型2(Model 2)采用Kinnell提出的包含徑流因子在內的細溝間侵蝕方程[20]:

Di=KiQSI(6)

式中,Q為平均徑流率,m/s;S為試驗小區坡度。

模型3(Model 3)采用Bulygin等提出的細溝間侵蝕方程[21]:

Di=KiQS?2/3?I(7)

采用SPSS 20.0進行數據分析,方差分析中運用LSD(最下極差法)進行多重比較,顯著性水平p

NSE=1- (Oi-Oc)2(Oi-Om)2(8)

式中,Oi為實測值,Oc為計算值,Om為實測值的平均值。

2?結果與分析

2.1?雨強、坡度及徑流率與土壤剝蝕率間關系

徑流產沙參數與雨強I、坡度S及雨強與坡度交互作用(I×S)的相關系數統計結果見表2。相關分析結果表明,工程開挖坡面徑流率與坡度相關性不顯著(p>0.05),與雨強I、坡度和雨強的交互作用(I×S)呈極顯著相關(p<0.01),其中Q與I相關性最高,這也說明了雨強大小決定了開挖坡面的產流量。

為了進一步明確徑流率和剝蝕率之間的關系,對試驗數據進行回歸分析。工程開挖坡面徑流率與土壤剝蝕率之間的關系見圖2。回歸分析表明,土壤剝蝕率與徑流率之間存在較好的線性關系,其中20°和30°坡的擬合方程斜率是10°坡的1.73倍和2.25倍,由此可見,徑流率是影響工程開挖坡面土壤流失的關鍵因子之一,其影響程度隨坡度的增加而增加。

工程開挖坡面剝蝕率與坡度相關性不顯著(p>0.05),與雨強I、坡度和雨強的交互作用(I×S)呈極顯著相關(p<0.01),其中Di與I×S相關性最高,這也說明了雨強和坡度共同決定了開挖坡面的產沙量?。根據WEPP模型中采用的細溝間侵蝕計算方程預測工程開挖坡面細溝間土壤侵蝕率,并由此得到其與降雨徑流因子和地形因子間的關系:

Di=1.603 71×106QSfI (R2=0.95,NSE=0.94,p<0.01)?(9)

式中,Di為工程開挖坡面的細溝間土壤剝蝕率,?kg/(s·m?2?);?Q為地表徑流平均徑流率,m/s;Sf為坡度因子;I為雨強,m/s。根據方程(9)的回歸系數得到工程開挖坡面土壤可蝕性因子Ki為1.603 71×106?kg·s/m4?。本研究計算得到的土壤可蝕性因子Ki低于楊明義等[22]在黃土坡耕地上計算得到的細溝間土壤可蝕性因子Ki(3.14×106kg·s/m4),但是高于Cao等[23]在馬尾松次生林坡面計算得到的細溝間土壤可蝕性因子Ki(1.18×106kg·s/m4)。

本研究所選細溝間侵蝕模型預測結果如表3和圖3所示,模型1、模型2和模型3的納什效率系數分別為0.94,0.91和0.95,表明在本次研究的雨強和坡度條件下3種模型在預測工程開挖坡面土壤剝蝕率上均效果良好,其中模型3在預測工程開挖坡面土壤剝蝕率方面效果最好。通過模型結構的對比可以發現,采用冪函數型坡度因子指標的計算結果更精確。

進一步對比3種模型的結構,本次研究認為可采用如下結構方程計算工程開挖坡面細溝間剝蝕率:

Di=KiIaQbSc(10)

式中,Di為工程開挖坡面細溝間的土壤剝蝕率,?kg/(s·m2);?Q為地表徑流平均徑流率,m/s;S為坡度因子;I為雨強,m/s;a,b,c為回歸參數。回歸分析結構表明剝蝕率與雨強、坡度及徑流率呈極顯著冪函數關系:Di=3672.72I?0.69?Q?0.61?S?0.82(R2=0.97,p

2.2?水動力學參數與土壤剝蝕率之間的關系

工程開挖坡面徑流流速?V與坡度S相關性不顯著(p>0.05),與雨強I及坡度和雨強的交互作用(I×S)呈極顯著相關(p<0.01),其中V與I×S相關性最高,這也說明了雨強和坡度交互作用決定了徑流流速的大小。不同雨強及坡度條件下,工程開挖坡面土壤剝蝕率與徑流流速的關系見圖4。由圖4可以看出,工程開挖坡面土壤剝蝕率隨著流速的增加而增加。

為了進一步明確二者之間的關系,對試驗數據進行回歸分析并得到如下關系:

Di=0.104V-0.005 (R2=0.76,NSE=0.76,p<0.01)(11)

式中,Di為工程開挖面細溝間土壤剝蝕率,?kg/(s·m2);?V為地表徑流流速,m/s。工程開挖坡面土壤剝蝕率與徑流流速呈線性關系,且相關系數R2=?0.76?,納什效率系數NSE=0.76,表明采用徑流流速預測工程開挖坡面剝蝕率并不理想(效果好標準為:R2>0.8;NSE>0.8)。

工程開挖坡面在不同坡度、雨強條件下剝蝕率與徑流剪切力的關系見圖5。

圖4?工程開挖坡面剝蝕率與流速關系Fig.4?Relationship between soil loss rate and flow velocity

圖5?工程開挖坡面剝蝕率與水流剪切力關系Fig.5?Relationship between soil loss rate and shear stress

由圖5可知,剝蝕率隨著水流剪切力的增加而增加。對試驗數據進行回歸分析后發現剝蝕率與水流剪切力之間存在明顯的線性關系,如下式:

Di=0.001τ-8.854×10?-4(R2=0.71,NSE=0.71,p<0.01) (12)

式中,Di為工程開挖坡面細溝間土壤剝蝕率,?kg/(s·m2);?τ為水流剪切力,Pa。有研究指出,當水流剪切力大于土壤臨界剪切力時,坡面才會發生侵蝕。由式(11)可知,工程開挖面剝蝕發生的臨界剪切力為?8.8?×10?-3Pa。而相關系數R2=0.71,采用納什效率系數NSE=0.71,表明采用水流剪切預測工程開挖坡面剝蝕率并不理想(效果好標準為:R2>0.8; NSE>0.8)。

水流功率?w?包含了坡度和徑流率的作用,可以從水流動力學角度來預測土壤流失量。

圖6?工程開挖坡面剝蝕率與水流功率關系?Fig.6?Relationship between soil loss rate and ?stream power

由圖6可以發現,工程開挖面剝蝕率隨著水流功率的增加而增加,根據回歸分析得到水流功率與剝蝕率之間的關系,如下式:

Di=0.012w-1.133×10?-5(R2=0.82,NSE=0.82,p<0.01)(13)

式中,Di為工程開挖坡面細溝間土壤剝蝕率,?kg/(s·m2);?w為水流功率,kg/s3。由式(13)可以看出,水流功率與剝蝕率之間呈線性函數關系,可以用來預測工程開挖面土壤流失量,同時水流功率必須達到一定的臨界值,坡面才會發生土壤流失,工程開挖坡面剝蝕發生的臨界水流功率為?9.441?×10?-4kg/s3。

綜上所述,相比于徑流流速和水流剪切力而言,剝蝕率與水流功率之間的相關性較好,可作為描述工程開挖坡面侵蝕動力過程的水動力學參數,這與王雪松等在工程堆積體坡面模擬降雨實驗中得到的結果一致[24]。

3?討 論

3.1?侵蝕模型適用性

本文針對工程開挖坡面,分析了其在降雨條件下各類水蝕因子與土壤剝蝕率之間的關系。工程開挖坡面具有緊實度高、容重大、入滲率低、坡度陡等特點[1],其產流產沙過程與天然坡面具有較大的差異。該試驗觀測到的開挖坡面侵蝕方式以細溝間侵蝕為主,整個試驗過程中坡面未出現侵蝕溝,故研究所得結論適用于未出現侵蝕溝的坡面面蝕階段。研究選取的3種細溝間侵蝕預測模型在工程開挖坡面剝蝕率預測方面效果均較為理想,其中模型3相對于模型1和模型2在預測開挖面土壤剝蝕率方面效果更好,表明冪函數型坡度因子指標更適用于工程開挖坡面土壤剝蝕率的計算。這與學者們在坡面細溝間侵蝕預測方面的研究結論一致[25]。研究所選用的3種模型的雨強指數均為1,該值高于通過對試驗數據多元回歸分析得到的回歸方程中的雨強因子指數(0.69),說明工程開挖坡面土壤剝蝕率受雨強影響的程度相對于其他土槽填裝試驗、野外坡耕地等較小。這可能與工程開挖坡面表面性質有關,開挖坡面地表植被被剝離,開挖過程中土壤受到擠壓改變了土壤結構穩定性而更易形成土壤結皮,從而改變了土壤表面抵抗降雨濺蝕的能力。將本研究得到的回歸方程與所選模型中擬合效果最好的模型3進行對比后發現,模型3的坡度因子指數為0.67,低于回歸方程中坡度因子的指數(0.82),這可能與開挖坡面坡度有關。研究調查發現大多數開挖坡面坡度較陡(>20°),坡度愈大,開挖面土體受到斜坡重力切向分力愈大,土體的不穩定性愈強,在降雨條件下發生下移的可能性愈大。Parson和Abrahams[26]的研究發現細溝間侵蝕量隨地表坡度的增加呈現先增加后減少的趨勢,即存在一個臨界坡度。在該研究中不同坡度條件下土壤剝蝕率與徑流率之間擬合方程斜率隨坡度的增加而增加(見圖2),并沒有出現臨界坡度的現象。吳普特[27]在安塞黃土坡面上觀測到細溝間侵蝕的臨界坡度在22°~33°之間,Horton在不考慮土壤入滲的條件下[28],基于運動波假設導出的臨界坡度為57°,由此可知臨界坡度并不是一個固定值,在本研究中開挖坡面的臨界坡度大于30°,這可能與開挖坡面土壤性質、表面糙度等有關。

3.2?用于預測土壤剝蝕率的水動力參數

對徑流流速V、水流剪切力τ和水流功率w與開挖坡面土壤剝蝕率之間的關系進行分析后發現,除了水流功率對土壤剝蝕率擬合效果較好,其余兩個水力參數對土壤剝蝕率擬合效果均不理想。就擬合效果而言,從R2和NSE 2個指標來看,w>V>τ,因此,水流功率是描述試驗條件下開挖坡面細溝間侵蝕過程最理想的水力參數。這與許多學者的研究結論類似,即水流功率適用于描述坡面薄層水流侵蝕過程,能夠反映坡面水流徑流率和坡度因子對土壤剝蝕率的影響。將以水動力學參數為基礎的剝蝕率預測模型與表3中的模型進行對比,發現表3中的模型預測精度大于采用單一水動力參數的預測結果。考慮到雨強是影響坡面細溝間侵蝕過程的重要參數,同時降雨引起的坡面流輸沙過程受水深的影響,而水深的大小受坡度的影響[29],因此綜合了降雨、徑流和坡度因子的模型對土壤剝蝕率的預測效果更好。根據本試驗研究結果,就工程開挖坡面而言,采用雨強、徑流率、坡度等因子對剝蝕率進行描述要明顯優于采用水動力學參數,因此建議無論是針對開挖坡面水土流失測算還是水土保持監測工作中,利用雨強、徑流率、坡度等因子對剝蝕率的描述更準確。

由于試驗條件的限制,本研究只針對工程開挖坡面細溝間侵蝕過程。實際過程中,工程開挖坡面形式多樣,下墊面物質組成、開挖土層的深度、開挖坡長等都會影響坡面水力侵蝕過程,侵蝕的方式也具有多樣性,諸如片蝕、細溝、淺溝等。本文野外開挖面小區尺寸較小,下墊面物質組成相對單一,試驗未針對不同坡長單獨設計,未考慮上方來水來沙條件下的開挖坡面侵蝕過程,后期需要針對試驗小區的規格、下墊面物質組成、侵蝕方式等方面開展進一步深入研究,為工程開挖坡面侵蝕預報模型的建立提供參考。

4?結 論

通過在野外建立不同坡度(10°,20°和30°)及不同模擬雨強(30,60,90,120,150 mm/h)條件下工程開挖坡面小區,研究了工程開挖坡面細溝間侵蝕量測算模型,主要結論如下。

(1) 工程開挖坡面剝蝕率Di與坡度S相關性不顯著(p>0.05),與雨強I、坡度和雨強的交互作用(I×S)呈極顯著相關(p<0.01),其中Di與I×S相關性最高,雨強和坡度共同決定了開挖坡面的產沙量。

(2) 3種細溝間侵蝕模型均能較好地預測工程開挖坡面土壤剝蝕率,就擬合效果而言,模型3(NSE=0.95)最佳,模型1(NSE=0.94)與模型2(NSE=?0.91?)次之,冪函數型坡度因子指標更適用于工程開挖坡面土壤剝蝕率的計算。根據WEPP細溝間侵蝕方程(模型1)計算得到工程開挖坡面土壤可蝕性因子Ki為1.607 31×106kg/(s·m4)。

(3) 工程開挖面徑流流速、水流剪切力及水流功率與土壤剝蝕率之間呈現線性函數關系,就擬合效果而言,w(NSE=0.82)>V(NSE=0.76)>τ(NSE=0.71),水流功率是描述其細溝間侵蝕動力過程的最理想水力參數,相應的臨界水流功率為9.441×10?-4kg/s3。

參考文獻:

[1]張平倉,程冬兵,李亞龍,等.工程開挖面特征及土壤流失量快速監測方法探討[J].長江科學院院報,2013,30(4):24-28.

[2]Lal R.Soil erosion research methods[M].Florida:St. Lucie Press,1994.

[3]Nyssen J,Poesen J,Moeyersons J,et al.Impact of road building on gully erosion risk: a case study from the northern Ethiopian highlands[J].Earth Surface Processes and Landforms,2002,27(12):1267-1283.

[4]王治國,白中科,趙景逵,等.黃土區大型露天礦排土場巖土侵蝕及其控制技術的研究[J].水土保持學報,1994,8(2):10-17.

[5]孫虎,唐克麗.城鎮建設中人為棄土降雨侵蝕實驗研究[J].土壤侵蝕與水土保持學報,1998,4(2):29-35.

[6]Nearing M A,Foster G R,Lane L J,et al.A process-based soil erosion model for USDA-Water Erosion Prediction Project technology[J].Trans.ASAE,1989(32):1587-1593.

[7]Morgan R P C,Quinton J N,Simth R E,et al. The European soil erosion model (EUROSEM):a dynamic approach for predicting sediment transport from fields and small catchments[J].Earth Surf.PROC.Land,1998,23(6),527-544.

[8]Beasley D B,Huggins L F.ANSWERS users manual[M].Indiana:Dep.of Agric. Eng.Purdue Univ.West Lafayette,1980.

[9]Cao L,Zhang K,Dai H,et al.Modeling Interrill Erosion on Unpaved Roads in the Loess Plateau of China[J].Land Degradation & Development,2015,26(8):825-832.

[10]程冬兵,張平倉,張長偉,等.工程開挖面土壤侵蝕模型的構建[J].農業工程學報, 2014(10):106-112.

[11]Fox D M,Bryan R B.The relationship of soil loss by interrill erosion to slope gradient[J].Catena,2000,38(3):211-222.

[12]Wu B,Wang Z,Zhang Q,et al.Modelling sheet erosion on steep slopes in the loess region of China[J].Journal of Hydrology,2017(553):549-558.

[13]Fan J C,Wu M F.Effects of Soil Strength, Texture, Slope Steepness and Rainfall Intensity on Interrill Erosion of Some Soils in Taiwan[C]∥In:10th International Soil Conservation Organization meeting,Purdue University,USDA-ARS National Soil Erosion Research Laboratory,1999.

[14]Huang C.Empirical Analysis of Slope and Runoff For Sediment Delivery from Interrill Areas[J].Soil Science Society of America Journal,1995,59(4):982-990.

[15]賀康寧,王治國,趙永軍.開發建設項目水土保持[M].北京: 中國林業出版社,2009.

[16]Li G,Abrahams A D,Atkinson J F. Correction factors in the determination of mean velocity of overland flow[J].Earth Surface Processes & Landforms,2015,21(6):509-515.

[17]Nearing M A,Bradford J M,Parker S C.Soil Detachment by Shallow Flow at Low Slopes[J].Soil Science Society of America Journal,1991,55(2):351-357.

[18]Bagnold R A.An Approach to the Sediment Transport Problem from General Physics[R].US Geol.surv.prof.paper,1966.

[19]Flanagan D C,Nearing M A.USDA-Water Erosion Prediction Project: hillslope profile and watershed model documentation[M]. Indiana:West Lafayette,National Soil Erosion Research Laboratory,USDA ARS,1995.

[20]Kinnell PIA. Runoff as a factor influencing experimentally determined interrill erodibilities[J].Soil Research,1993,31(3):333-342.

[21]Bulygin S Y,Nearing M A,Achasov A B.Parameters of interrill erodibility in the WEPP model[J].Eurasian Soil Science C/C of Pochvovedenie,2002,35(11):1237-1242.

[22]楊明義,劉普靈,田均良.黃土高原農耕地坡面侵蝕過程的^7Be示蹤試驗研究[J].水土保持學報,2003,17(3):28-30.

[23]Cao L,Liang Y,Wang Y,et al.Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall[J].Catena,2015(129):1-8.

[24]王雪松,陳曦,馬洪超,等.贛北紅土區工程堆積體坡面水動力特性[J].水科學進展,2016,27(3):412-422.

[25]Zhang X C,Nearing M A, Norton L D,et al.Modeling interrill sediment delivery[J].Soil Science Society of America Journal,1998,62(2):438-444.

[26]Parson A J,Abrahams A D.Field investigations of sediment removal in interrill overland flow[M].California:UCL Press,1993.

[27]吳普特.動力水蝕實驗研究[M].西安: 陜西科學技術出版社,1997.

[28]Horton R E.Erosional development of streams and their drainage basins;hydrophysical approach to quantitative morphology[J].Geological Society of America Bulletin,1945,56(3):275-370.

[29]Kinnell P I A.The influence of flow discharge on sediment concentrations in raindrop induced flow transport[J].Soil Research,1988,26(4):575-582.

引用本文:孫?蓓,潘曉穎,李建明.模擬降雨條件下開挖面土壤侵蝕測算模型研究[J].人民長江,2019,50(1):39-45.

Research on soil erosion calculation model ofexcavated slope under simulated rainfall

SUN Bei, PAN Xiaoying, LI Jianming

(Soil and Water Conservation Department, Yangtze River Scientific Research Institute, Wuhan 430010, China)

Abstract:In order to control soil and water loss on excavated slope in a scientific manner, we conducted artificial simulated rainfall field experiment by setting up five rainfall intensity levels (30,60,90,120,150 mm/h) and three slope gradients (10°, 20°, 30°). We systematically investigated the relationship between excavated soil slope erosion rate and rainfall intensity, slope gradient, runoff rate, flow velocity, shear stress and stream power under different scenarios. The results show that there is no significant correlation between excavated soil slope erosion rate and slope gradient with 95% confidence interval; however excavated soil slope erosion rate is strongly correlated with rainfall intensity, and the combination effects of slope gradient and rainfall intensity (I x S) with 99% confidence interval. The excavated soil slope erosion rate is calculated using three common inter-rill erosion models, and power function slope factor is more applicable in terms of the simulation effects. Hydrodynamic parameters used in calculation include runoff velocity, shear stress and stream power, and stream power appears to be the ideal parameter for describing dynamic process of inter-rill erosion.

Key words:?excavated soil slope; artificial simulated rainfall; hydrodynamic parameters; inter-rill erosion

猜你喜歡
工程模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
子午工程
太空探索(2016年6期)2016-07-10 12:09:06
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
工程
工程
工程
工程
主站蜘蛛池模板: 国模私拍一区二区三区| 好久久免费视频高清| 精品国产一区二区三区在线观看| 婷婷六月综合| 999精品视频在线| 午夜福利视频一区| a级毛片网| 国产手机在线ΑⅤ片无码观看| 亚洲高清在线播放| 日本精品一在线观看视频| 国产激情在线视频| av在线人妻熟妇| 国产精品精品视频| 超碰aⅴ人人做人人爽欧美 | 爱爱影院18禁免费| 九色最新网址| 久久不卡精品| 亚洲综合第一页| 中文字幕伦视频| 国产成人精品免费视频大全五级| 亚洲AⅤ综合在线欧美一区| 911亚洲精品| 操美女免费网站| 免费观看成人久久网免费观看| 欧美在线伊人| 97se综合| 欧美精品v欧洲精品| 国产亚洲欧美另类一区二区| P尤物久久99国产综合精品| 国产综合精品日本亚洲777| 国产91全国探花系列在线播放| 欧美精品1区2区| 国产AV无码专区亚洲A∨毛片| 福利在线不卡| 国外欧美一区另类中文字幕| 久久久久国产精品免费免费不卡| 亚洲区一区| 99精品一区二区免费视频| 色香蕉影院| 国产真实自在自线免费精品| 国产午夜精品一区二区三区软件| 欧美黄色网站在线看| 久久精品亚洲中文字幕乱码| www.91在线播放| 国产AV无码专区亚洲精品网站| 亚洲国产日韩欧美在线| 日韩激情成人| 91成人试看福利体验区| 波多野结衣无码中文字幕在线观看一区二区 | 18禁高潮出水呻吟娇喘蜜芽| 黄片在线永久| 国产亚洲欧美日韩在线一区| 热99精品视频| 毛片免费高清免费| 波多野结衣AV无码久久一区| 免费视频在线2021入口| 再看日本中文字幕在线观看| 亚洲大尺度在线| 亚洲av色吊丝无码| 在线不卡免费视频| 久久人搡人人玩人妻精品一| 国产在线视频福利资源站| 2020亚洲精品无码| 精品欧美日韩国产日漫一区不卡| 91精品人妻互换| 伊人天堂网| 亚洲伊人天堂| 免费观看欧美性一级| 色综合天天综合中文网| 久操线在视频在线观看| 色爽网免费视频| 亚洲第一区欧美国产综合| 久久一色本道亚洲| 国产女人综合久久精品视| 精品三级网站| 亚洲成年人片| 在线观看国产精品第一区免费 | 国产手机在线观看| 蜜桃视频一区| 一本大道香蕉高清久久| 在线观看无码a∨| 婷婷色丁香综合激情|