王成己 郭學清 曾文龍 陳慶河 唐莉娜 黃毅斌
摘要:煙草青枯病是由茄科勞爾氏菌(Ralstonia solanacearum)引起的土傳細菌性病害,該病害分布廣、危害重、毀滅性強,是熱帶、亞熱帶煙區的主要病害。生物質炭是生物質材料在厭氧高溫條件下熱裂解產生的高度芳香化的富碳物質,具有豐富的官能團、發達的孔隙結構和較強的吸附能力,對改善煙田土壤環境具有較大潛力,是減輕或抑制煙草青枯病的長效途徑,具有廣闊應用前景。文章結合國內外研究情況綜述了農業、化學及生物等措施防控煙草青枯病的研究現狀,認為單一的農業、化學或生物措施防控煙草青枯病的效果均不理想,農藥或土壤改良劑對土壤、植株、牲畜及環境造成破壞,影響生態安全;綜合防控措施可消除單一措施帶來的短板效應。文章提出利用生物質炭定向調控煙田根際微生物、重建健康根際生態系統、減輕或抑制煙草青枯病的途徑:(1)改善土壤理化性狀;(2)提升土壤肥力;(3)改善土壤微生物多樣性;(4)提高土壤酶活性。生物質炭通過調控土壤生境來改善煙草農藝性狀,減輕或抑制煙草青枯病發生,同時促進煙草碳氮代謝,有效調控煙葉化學品質。生物質炭的農業應用可為全面解決煙草連作障礙提供技術參考。
關鍵詞: 生物質炭;煙草青枯病;病原菌;土壤微生物區系;防控作用
中圖分類號: S435.72? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2019)08-1756-08
The prevention and control effects of biochar on tobacco bacterial wilt and its application prospects
WANG Cheng-ji1, GUO Xue-qing2, ZENG Wen-long3, CHEN Qing-he4,
TANG Li-na5, HUANG Yi-bin6*
(1Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences/Fuzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Fuzhou? 350013, China; 2Changting Tobacco Company of Fujian Province, Changting, Fujian? 365500, China; 3Longyan Tobacco Company of Fujian Province, Longyan, Fujian 364000, China; 4Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou? 350013, China; 5Tobacco Science Research Institute, Fujian Tobacco Monopoly Bureau, Fuzhou? 350003, China; 6Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou? 350013, China)
Abstract:Tobacco bacterial wilt is a soil-borne bacterial disease caused by Ralstonia Solanacearum, which is a major disease in tropical and subtropical tobacco areas. It spreads widely and causes devastating damage. Biochar is a highly aromatic carbon-rich material produced by pyrolysis of biomass material under anaerobic high temperature. It has rich functional groups, developed pore structure and strong adsorption capacity. It has great potential to improve the soil environment of tobacco fields, and is a long-term approach to reduce or inhibit tobacco bacterial wilt. This paper reviewed the research status of agricultural, chemical and biological measures to prevent and control tobacco bacterial wilt at home and abroad. It was concluded that single agricultural, chemical and biological measures to prevent and control tobacco bacte-rial wilt were not ideal. The pesticides or soil amendment would damage the soil, plants, livestocks and environment, and affect ecology safety. Comprehensive prevention and control measures could eliminate the shortcomings brought by a single measure. The methods of using biochar to regulate tobacco rhizosphere microorganisms, rebuild healthy rhizosphere ecosystem, and reduce or inhibit tobacco bacterial wilt were put forward. The methods could(1)improve soil physical and chemical properties; (2)improve soil fertility; (3)improve soil microbial diversity; (4)improve soil enzyme activity. By regulating soil habitat, biochar could improve the agronomic properties of tobacco, reduce or inhibit the onset of tobacco bacterial wilt, promote the carbon and nitrogen metabolism of tobacco, and effectively regulate the chemical quality of tobacco leaves. The agricultural application of biochar can provide technical reference for the comprehensive solution of tobacco continuous cropping obstacles.
Key words: biochar; tobacco bacterial wilt; pathogen; soil microflora; prevention and control effects
0 引言
煙草是我國重要的經濟作物,國家統計局的信息顯示,2017年我國煙草種植面積為113.1萬ha,煙葉產量為239.1萬t,其中烤煙面積和產量分別為108.1萬ha和227.9萬t。煙草長期連作導致植煙土壤板結、pH失衡、有機質活性降低(Chen et al.,2018),加之我國主要煙區氣溫高、空氣濕度大等環境因素,導致煙草土傳病害在我國東南和西南煙區普遍發生,甚至在個別年份暴發流行(蔣歲寒等,2016)。煙草青枯病由茄科勞爾氏菌(Ralstonia solanacearum)引起,是一種分布廣、危害重、毀滅性極強的土傳細菌性病害,嚴重影響煙葉生產(Liu et al.,2015)。青枯病已成為熱帶、亞熱帶地區煙田的主要病害,在全球氣溫變暖的背景下,青枯病向高緯度、高海拔地區蔓延,對煙草生產造成極大威脅(孔凡玉,2003)。生物質炭(Biochar)是生物質材料在厭氧高溫條件下熱裂解產生的高度芳香化的富碳物質(Antal and Gronli,2003)。生物質炭的土壤改良與緩釋效應使其成為調控土壤連作障礙(王成己等,2018b)及實施土壤健康管理的重要途徑(劉曉雨等,2018)。文章在分析煙草青枯病成因及危害的基礎上,剖析傳統農業、化學及生物措施防治煙草青枯病的優缺點,闡釋生物質炭防控煙草青枯病的途徑和作用機制,為全面解決煙草連作障礙提供技術參考。
1 煙草青枯病的病原及致病機制
煙草長期連作導致植煙土壤營養元素、pH和微生態等嚴重失衡,連作障礙問題日趨嚴重(Li et al.,2014)。煙草土傳病害的發生與根際土壤微生物數量、區系和群落結構密切相關,是根際土壤微生物群體相互作用的結果(施河麗等,2018)。植煙土壤營養元素含量與煙草青枯病有密切關系(黎妍妍等,2018)。鄭世燕等(2014)研究表明,青枯病發病煙株根際土壤中交換性鈣、有效硼、有效鉬等礦質營養含量顯著高于健康煙株根際土壤,土壤中有效鉬、交換性鈣含量可能是影響青枯病發生的關鍵土壤營養因子。而pH、磷、鉀、鈣和銅是對根際土壤細菌群落影響較大的土壤環境因子(施河麗等,2018)。
煙草青枯病是典型的土傳細菌性維管束植物病害,主要發生在煙草根、莖和葉等部位,發病時由葉片萎縮到根系腐爛,最后整株煙草枯萎。病原茄科勞爾氏菌盡管在煙株維管束中蔓延擴增,但仍主要分布于土壤中。存活在土壤中的青枯菌通過土壤翻耕或灌溉、除草等途徑傳播到植株根部,然后從植物根部進入木質部,通過脂多糖識別寄主,產生胞外多糖造成維管束阻塞,與此同時分泌胞外蛋白酶降解細胞壁,導致寄主植物快速萎蔫(McGarvey et al.,1999)。青枯菌對土壤細菌群落的影響遠大于煙株。因此,青枯病防治不能局限于煙株本身,應從植煙土壤入手加大防治力度(向立剛等,2019)。
2 煙草青枯病的防治措施
作為煙草生產最主要病害之一,煙草青枯病一直受到國內外科研人員的廣泛關注,分別從農業、化學及生物學等角度開展了大量防控研究,并取得了一些重要進展。
2. 1 農業防治措施
(1)耕作措施。研究表明,不同種植模式(穰中文等,2018)、綠肥—煙草輪作(張超,2016)和稻草溶田(章文水等,2019)可增加土壤微生物多樣性及土壤酶活性,改善土壤微生境,減輕或降低烤煙青枯病發病率和發病程度。深耕改變了土壤環境條件,切斷土壤病蟲害的傳播途徑,從而抑制土壤病蟲的發生和繁殖(謝永輝等,2015)。(2)均衡營養。煙株營養狀況與其抗病性密切相關,定期向煙株增施鉬、鈣等營養元素可增強煙草防御青枯病的能力(鄭世燕等,2014)。施鉀提高了植物木質化程度,使植物細胞壁、莖稈和葉片等功能器官變厚,從而提高植物抗病性(Wang et al.,2013)。施用鉀肥增加煙草根際土壤微生物的多樣性和益生菌數量,減少青枯病病原菌在土壤中的相對豐度(陳娜,2018);同時加快酚類物質合成,提高與抗病相關的總酚含量及葉片的鉀含量,減少病原菌入侵(Dordas,2008)。(3)農事操作。平整煙地、調整煙草移栽時間等措施也能在一定程度上減少細菌及真菌性病害發生。
2. 2 化學防治措施
早期生產上主要依靠化學藥劑來控制和減輕煙草青枯病危害,效果穩定且用于生產的藥劑有鏈霉素、琥珀酸銅、青枯靈和自制石硫合劑等。李大鵬和朱三榮(2008)研究表明,藥簽插莖與灌蔸相結合的方法有助于防控煙草青枯病。陳澤鵬等(2011)研究表明,苯并噻二唑(BTH)具有顯著的誘導抗病效應。72%農用硫酸鏈霉素和20%青枯靈也可有效抑制煙草青枯病的發作(賴榮泉和鐘秀金,2015)。化學農藥雖然能在短期內控制病害發生和傳播,但過量使用化學藥劑既損害煙葉品質又污染環境(李想等,2017)。一些抑制煙草青枯病的農藥或土壤改良劑對土壤、植株、牲畜及環境造成破壞,影響生態安全。
2. 3 生物防治措施
內生菌作為煙草生長發育和代謝過程中不可或缺的一部分,在與宿主相互作用下形成相似或相同的功能(姚領愛等,2010)。苗期接種菌根真菌可有效防控煙草青枯病(曾維愛等,2011)。感染內生菌的煙草能增強其抗病原菌、害蟲等生物抗性,是綠色、安全的生物防控技術(張夢旭等,2017;張鵬等,2017)。芽胞桿菌是土壤和植物微生態中的優勢微生物種群,具有較強抗菌防病能力,一些優良菌株已成功應用于植物病害防治(姜乾坤等,2017)。從青枯病發病煙田中健康煙株根際土壤中篩選獲得的XC4菌株(許大鳳等,2016)、以及從煙田中分離出的解淀粉芽孢桿菌和甲基營養型芽孢桿菌(夏艷等,2014)對煙草青枯病均具有較好的防控效果。
3 生物質炭對煙草青枯病的防控作用
煙草連作障礙產生的根本原因是土壤微生態失衡,因此,利用生物質炭定向調控煙田根際微生物,重建健康根際生態系統,可增加土壤有益微生物,改善根區微生境(陳慶榮等,2016;王成己等,2017a),減輕或抑制煙草青枯病發生,并最終克服煙草連作障礙(王成己等,2018b)。
3. 1 生物質炭特性
生物質炭由生物質材料在厭氧高溫條件下熱裂解形成,生物質材料及炭化條件的不同,導致生物質炭的性質和施用效應也存在差異(邱良祝等,2017)。近年來,隨著生物質熱裂解技術及產業化水平的提高(潘根興等,2015),社會各界對生物質炭特性的認知度也不斷提高,農作物秸稈炭化還田—土壤改良技術得到深入研究和廣泛應用(王成己等,2018a),成為土壤可持續管理的重要途徑(陳溫福等,2014)。
(1)物理特性。生物質材料熱裂解后保留了原生物質的孔隙結構,從而使生物質炭具有較大的孔隙度和比表面積(Cornelissen et al.,2004)。不同材料和裂解方式對生物質炭比表面積影響很大,有的只有0.7~15.00 m2/g(Ozcimen,2010),有的每平方米可高達幾百克(Chun et al.,2004)。在一定溫度范圍內,隨裂解溫度升高生物質炭比表面積增加,而產率降低、持水量減少(謝祖彬等,2011)。
(2)化學特性。生物質炭含有碳、氫、氧和氮等元素,碳的質量分數達38%~76%,磷、鉀、鈣和鎂的含量也較高(劉玉學等,2009)。烷基和芳香結構是生物質炭中最主要的成分。施用生物質炭可提高土壤有機碳含量,且能為植物生長提供較多的養分。生物質炭一般呈堿性,在一定范圍內,其pH隨熱解溫度升高而增加(吳志丹等,2015;王成己等,2017b)。生物質炭含有的-COO-(-COOH)和-O-(-OH)等含氧官能團及表面負電荷賦予其改良土壤質量的巨大潛力(Wu et al.,2019)。
3. 2 生物質炭防控煙草青枯病的途徑
在我國東南和西南煙區,煙草生長前期低溫多雨,土壤濕度較大,是煙草土傳病害發生的重要氣候因素。土壤質地、通氣狀況、溫度、濕度、pH及微生物區系是煙草青枯病發生的重要土壤條件。因此,利用生物質炭改善煙田土壤理化性狀、土壤養分、土壤微生物多樣性及酶活性,進而改善煙草農藝性狀,是防控煙草青枯病的重要途徑。
(1)改善土壤理化性狀。在煙田施用生物質炭可降低土壤容重、改變土壤三相比(劉卉等,2018),增加土壤田間持水量、土壤總孔隙度和毛管孔隙度,增強土壤透氣性(陳懿等,2015),促進煙草生根及前期生長(陳懿等,2017;劉卉等,2017)。土壤酸化促進土壤中鋁的溶出,而土壤中過多的鋁離子對煙草根系造成傷害,從而更容易被青枯病菌侵入致病。生物質炭呈堿性,可提高酸性土壤pH,降低土壤可溶性鋁和有毒形態鋁濃度(袁金華和徐仁扣,2010)。利用生物質炭修復酸化植煙土壤,保持煙株營養平衡,從而降低土壤中青枯病病原菌數量,有效控制煙草青枯病的發生(牛桂言等,2017)。
(2)提升土壤肥力。研究表明,添加生物質炭提高了煙田土壤有機質含量、pH和CEC(王成己等,2017a),增加土壤硝態氮、速效氮、速效磷和速效鉀含量,降低銨態氮含量(管恩娜等,2016),改善土壤微生態環境(張璐等,2019),增強煙株抗病能力(鄭世燕等,2013)。
(3)改善土壤微生物多樣性。健康和發病煙田土壤微生物群落結構存在明顯差異,健康土壤微生物多樣性(陳乾錦等,2019)及有益菌豐度、土壤pH和養分含量(施河麗等,2018)均高于發病土壤。青枯病是煙草生產中的毀滅性土傳病害,通過改善土壤微生物多樣性,提高羧酸類和聚合物類碳源的利用能力(胡瑞文等,2018),增加有益微生物群的繁殖來抑制病原菌增長,以有效降低青枯病發病率(孫思和王軍,2015)。陳懿等(2015)研究表明,生物質炭可改變植煙土壤細菌、放線菌和真菌數量,在改良植煙土壤微生態和調控烤煙生理特性方面具有積極效應。土壤微生物群落結構越豐富、多樣性越高,對抗病原菌的綜合能力越強(Bonilla et al.,2012)。已有研究表明,生物質炭可改善植煙土壤細菌群落多樣性和組成(陳澤斌等,2018;任天寶等,2018),提高根際土壤細菌種類的多樣性和分布的均勻程度(陳澤斌等,2018)及土壤微生物AWCD值和多樣性指數(張璐等,2019),且煙稈炭對煙草根際土壤微生物群落結構的影響大于小麥秸稈炭(邵慧蕓等,2019)。對比研究表明,施用稻殼炭和木屑炭均能改善煙田土壤微生物狀況及其對碳源的利用(李成江等,2019),促進以羧酸類和多聚物類物質為碳源的微生物的生長(張璐等,2019),從而減少煙草青枯病的發生。
(4)提高土壤酶活性。施用生物質炭有利于提高煙株根系活力和根冠比(劉領等,2016),增加土壤蔗糖酶、脲酶活性和微生物量碳含量,減少氮素等營養元素流失(吳嘉楠等,2018),但對土壤轉化酶和多酚氧化酶活性影響不顯著(龔絲雨等,2017)。
(5)改善烤煙農藝性狀。煙田添加生物質炭后烤煙株高、有效葉數、最大葉長(寬)和莖圍等均有不同程度增加(肖和友等,2018),煙葉產量和上等煙比例增加,且煙葉炭效果明顯優于煙草和玉米秸稈炭(李成江等,2019)。而劉月華等(2016)研究表明,稻殼炭對烤煙青枯病的防治效果好于煙稈炭,但前者降低了煙葉產量。此外,施用生物質炭可提高煙葉細菌群落豐度(夏體淵等,2017),促進煙草碳氮代謝,提高上部煙葉鉀氯比及中部煙葉總糖、還原糖、鉀含量、糖堿比和鉀氯比,對煙葉化學品質具有一定調控作用(張弘等,2018)。
3. 3 生物質炭防控煙草青枯病的機制
煙草連作減少了煙田土壤有益微生物數量、改變了微生物群落結構,最終導致土壤微生態失衡。因此,調控土壤微生物區系是防控煙草青枯病的重要切入點。已有的研究表明,改善植煙土壤養分狀況和微生物群落結構是生物質炭防控煙草青枯病的主要機理之一。鑒于此,將生物質炭用于煙草青枯病防控就變得切實可行,這也是生物質炭農學和環境效應的具體體現。土壤微生物指示生態系統功能變化為土壤性質變化提供依據,而土壤性質的變化反過來又對土壤微生態改善起到推動作用(王成己等,2018b)。基于此,筆者認為生物質炭防控煙草青枯病的機制為:(1)物理化學機制。生物質炭改善土壤孔隙結構,提高土壤保水保肥及養分固定能力,為土壤微生物提供豐富的養分和能量來源,從而增強土壤微生物活性,提高煙草抗病能力;生物質炭通過提高酸性土壤pH來提高土壤養分利用率和微生物活性,增強菌根生物功能,進而提高煙草抗病性。(2)生物學機制。生物質炭調控根區土壤有機酸和氨基酸含量,提高羧酸類和聚合物類碳源的利用能力,改善土壤微生態條件,提高土壤微生物數量及活性,促進有益微生物生長,從而抑制病原菌增長。生物質炭對土壤微生物和煙草生長產生積極影響,抑制土壤病原菌生長及對植物的侵染能力。
4 展望
煙草青枯病是典型的土傳細菌性維管束植物病害,單一的農業、化學或生物防治措施對煙草青枯病防控效果均不理想,農藥或土壤改良劑甚至對土壤環境造成破壞,通過傳統方法防控煙草青枯病已近瓶頸。近年來,綜合防控措施越來越受到關注,以消除單一措施帶來的短板效應。生物質炭含有多種養分元素,具有豐富官能團、發達孔隙結構、較強吸附能力,對改善煙田土壤環境具有較大潛力。通過生物質炭定向調控煙田根際微生物,改善土壤微生境,重建健康的土壤微生物體系,抑制病原菌生長,是減輕或抑制煙草青枯病的長效途徑。具體從如下幾方面入手:(1)改善土壤理化性狀。通過生物質炭改變土壤三相比及孔隙度,增強土壤透氣性和田間持水量,促進煙草生根及前期生長,增強煙株抗病性。(2)提升土壤肥力。通過生物質炭提高煙田土壤有機質含量、pH和CEC,增加土壤硝態氮、速效氮、速效磷和速效鉀含量,降低銨態氮含量,改善土壤微生態環境,增強煙株抗病能力。(3)改善土壤微生物多樣性。通過生物質炭提高發病植煙土壤微生物多樣性及有益菌豐度,提高羧酸類和聚合物類碳源的利用能力,增加有益微生物群的繁殖來抑制病原菌的增長,以有效降低青枯病發病率。(4)提高土壤酶活性。通過生物質炭提高煙株根系活力,增加土壤蔗糖酶、脲酶活性和微生物量碳含量,減少營養元素流失。生物質炭通過上述途徑改善煙草農藝性狀,減輕或抑制煙草青枯病發作,同時促進煙草碳氮代謝,提高上部煙葉鉀氯比及中部煙葉總糖、還原糖、鉀含量、糖堿比和鉀氯比,有效調控煙葉化學品質。
近年來,熱裂解生物質炭產業化水平日趨提高,農作物秸稈炭化還田—土壤改良技術得到深入研究和廣泛應用,已成為農業綠色發展的新途徑。生物質炭在農業、能源和環境等領域的應用前景將會越來越廣闊。
參考文獻:
陳娜. 2018. 鉀肥對煙草青枯病的防控效果及其根際微生物群落的影響[J]. 安徽農業科學,46(22): 125-127. [Chen N. 2018. Control effect of potassium fertilizer on tobacco bacterial wilt and its effect on rhizosphere microbial communities[J]. Anhui Agriculture Sciences,46(22):125-127.]
陳乾錦,林書震,李紅麗,李小龍,蘆阿虔,沈建平,郭夏麗,王巖. 2019. 邵武煙田土壤微生物群落結構變化與煙草青枯病發生關系初報[J/OL]. 中國煙草學報. https://doi.org/10.16472/j.chinatobacco.2018.352. [Chen Q J,Lin S Z,Li H L,Li X L,Lu A Q,Shen J P,Guo X L,Wang Y. 2019. A preliminary analysis on relationship between soil microbial community structure and tobacco bacterial wilt in Shaowu tobacco field[J/OL]. Acta Tabacaria Sinica. https://doi.org/10.16472/j.chinatobacco.2018.352.]
陳慶榮,王成己,陳曦,唐莉娜,劉岑薇,宋鐵英,黃毅斌. 2016. 施用煙稈生物黑炭對紅壤性稻田根際土壤微生物的影響[J]. 福建農業學報,31(2): 184-188. [Chen Q R,Wang C J,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2016. Effect of tobacco stalk-derived biochar on microbes in rhizosphere soil at red paddy fields[J]. Fujian Journal of Agriculture Sciences,31(2): 184-188.]
陳溫福,張偉明,孟軍. 2014. 生物炭與農業環境研究回顧與展望[J]. 農業環境科學學報,33(5): 821-828. [Chen W F,Zhang W M,Meng J. 2014. Biochar and agro-ecological environment: Review and prospect[J]. Journal of Agro-Environment Science,33(5): 821-828.]
陳懿,陳偉,高維常,程建中,林葉春,潘文杰. 2017. 煙稈生物炭對烤煙根系生長的影響及其作用機理[J]. 煙草科技,50(6): 26-32. [Chen Y,Chen W,Gao W C,Cheng J Z,Lin Y C,Pan W J. 2017. Effects of tobacco stalk biochar on root growth of flue-cured tobacco and its action mechanism[J]. Tobacco Science & Technology,50(6): 26-32.]
陳懿,陳偉,林葉春,程建中,潘文杰. 2015. 生物炭對植煙土壤微生態和烤煙生理的影響[J]. 應用生態學報,26(12): 3781-3787. [Chen Y,Chen W,Lin Y C,Cheng J Z,Pan W J. 2015. Effects of biochar on the micro-ecology of tobacco-planting soil and physiology of flue-cured tobacco[J]. Chinese Journal of Applied Ecology,26(12): 3781-3787.]
陳澤斌,高熹,王定斌,郭麗紅,王定康,徐勝光. 2018. 生物炭不同施用量對煙草根際土壤微生物多樣性的影響[J]. 華北農學報,33(1): 224-232. [Chen Z B,Gao X,Wang D B,Guo L H,Wang D K,Xu S G. 2018. Effects of di-fferent biochar application rates on rhizosphere soil microbial diversity of tobacco[J]. Acta Agriculturae Boreali-Sinica,33(1): 224-232.]
陳澤鵬,王濤,陳偉明,王曉賓,萬樹青. 2011. 煙草抗青枯病的藥劑誘導效應與抑菌增效作用[J]. 煙草科技,(1): 74-78. [Chen Z P,Wang T,Chen W M,Wang X B,Wan S Q. 2011. Inductive effect and synergism of fungicides against tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(1): 74-78.]
龔絲雨,聶亞平,張啟明,鐘思榮,張世川,何寬信,劉齊元. 2017. 增施生物炭對烤煙成熟期根際土壤酶活性的影響[J]. 江西農業學報,29(10): 54-57. [Gong S Y,Nie Y P,Zhang Q M,Zhong S R,Zhang S C,He K X,Liu Q Y. 2017. Effects of increasing biochar application on soil enzyme activities in rhizosphere of flue-cured tobacco during maturity[J]. Acta Agriculturae Jiangxi,29(10): 54-57.]
管恩娜,管志坤,楊波,董建新,胡希好,闞京軍,吳元華,張慶忠,李明光,梁洪波. 2016. 生物質炭對植煙土壤質量及烤煙生長的影響[J]. 中國煙草科學,37(2): 36-41. [Guan E N,Guan Z K,Yang B,Dong J X,Hu X H,Kan J J,Wu Y H,Zhang Q Z,Li M G,Liang H B. 2016. Effects of biochar on tobacco-planting soil quality and flue-cured tobacco growth[J]. Chinese Tobacco Science,37(2): 36-41.]
胡瑞文,劉勇軍,周清明,劉智炫,黎娟,邵巖,劉卉. 2018. 生物炭對烤煙根際土壤微生物群落碳代謝的影響[J]. 中國農業科技導報,20(9): 49-56. [Hu R W,Liu Y J,Zhou Q M,Liu Z X,Li J,Shao Y,Liu H. 2018. Effects of bio-carbon on the carbon metabolism of rhizosphere soil microbial communities in flue-cured tobacco[J]. Journal of Agricultural Science and Technology,20(9): 49-56.]
姜乾坤,彭閣,王瑞,譚軍,邸慧慧,向必坤,趙秀云,彭五星,董善余. 2017. 抗青枯內生細菌的篩選及其對煙草青枯病的防治效果[J]. 中國煙草科學,38(5): 13-17. [Jiang Q K,Peng G,Wang R,Tan J,Di H H,Xiang B K,Zhao X Y,Peng W X,Dong S Y. 2017. Selection of endophy-tic antagonistic bacteria for control of tobacco bacterial wilt[J]. Chinese Tobacco Science,38(5): 13-17.]
蔣歲寒,劉艷霞,孟琳,朱春波,李想,沈標,石俊雄,楊興明. 2016. 生物有機肥對煙草青枯病的田間防效及根際土壤微生物的影響[J]. 南京農業大學學報,39(5): 784-790. [Jiang S H,Liu Y X,Meng L,Zhu C B,Li X,Shen B,Shi J X,Yang X M. 2016. Effects of biological organic fertilizer on field control efficiency of tobacco Ralstonia Solanacearum wilt and soil microbial in rhizosphere soil [J]. Journal of Nanjing Agricultural University,39(5): 784-790.]
孔凡玉. 2003. 煙草青枯病的綜合防治[J]. 煙草科技,(4): 42-43. [Kong F Y. 2003. Integrated control of tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(4): 42-43.]
賴榮泉,鐘秀金. 2015. 不同藥劑對煙草青枯病的防治效果[J]. 中國農學通報,31(22): 175-179. [Lai R Q,Zhong X J. 2015. Control effects of different medicaments on tobacco bacterial wilt in tobacco field[J]. Chinese Agricultural Science Bulletin,31(22): 175-179.]
李成江,李大肥,周桂夙,許龍,徐天養,趙正雄. 2019. 不同種類生物炭對植煙土壤微生物及根莖病害發生的影響[J]. 作物學報,45(2): 289-296. [Li C J,Li D F,Zhou G S,Xu L,Xu T Y,Zhao Z X. 2019. Effects of different types of biochar on soil? microorganism and rhizome di-seases occurrence of flue-cured tobacco[J]. Acta Agrono-mica Sinica,45(2): 289-296.]
李大鵬,朱三榮. 2008. 鏈霉素不同施用方法對煙草青枯病的防效[J]. 植物保護,34(4): 151-153. [Li D P,Zhu S R. 2008. Effects of different application methods of streptomycin on tobacco bacterial wilt[J]. Plant Protection,34(4): 151-153.]
李想,劉艷霞,陸寧,蔡劉體,袁有波,石俊雄. 2017. 綜合生物防控煙草青枯病及其對土壤微生物群落結構的影響[J]. 土壤學報,54(1): 216-226. [Li X,Liu Y X,Lu N,Cai L T,Yuan Y B,Shi J X. 2017. Integrated bio-control of tobacco bacterial wilt and its effect on soil microobial community structure[J]. Acta Pedologica Sinica,54(1): 216-226.]
黎妍妍,覃光炯,王林,余君,許汝冰,彭五星,饒雄飛. 2018. 清江流域煙區煙草青枯病發生的土壤營養因素分析[J]. 南方農業學報,49(4): 656-661. [Li Y Y,Qin G J,Wang L,Yu J,Xu R B,Peng W X,Rao X F. 2018. Soil nutrient elements affecting the occurrence of tobacco bacterial wilt in Qingjiang River Basin[J]. Journal of Sou-thern Agriculture,49(4): 656-661.]
劉卉,周清明,黎娟,向德明,張黎明. 2018. 長期定位連續施用生物炭對植煙土壤物理性狀的影響[J]. 華北農學報,33(3):182-188. [Liu H,Zhou Q M,Li J,Xiang D M,Zhang L M. 2018. Effects of long-term located conti-nuous application of biochar on soil physical properties of planting tobacco[J]. Acta Agriculturae Boreali-Sinica,33(3): 182-188.]
劉卉,周清明,劉勇軍,黎娟,張黎明,張明發. 2017. 生物炭對烤煙生長及煙葉質量的影響[J]. 中國農業科技導報,19(10): 73-81. [Liu H,Zhou Q M,Liu Y J,Li J,Zhang L M,Zhang M F. 2017. Effects of biochar on the growth of flue-cured tobacco and quality of tobacco leaf[J]. Journal of Agricultural Science and Technology,19(10): 73-81.]
劉領,王艷芳,宋久洋,周俊學,王小東,陳明燦. 2016. 生物炭與氮肥減量配施對烤煙生長及土壤酶活性的影響[J]. 河南農業科學,45(2): 62-66. [Liu L,Wang Y F,Song J Y,Zhou J X,Wang X D,Chen M C. 2016. Effects of biochar addition combined with reducing nitrogen application rate on growth of flue-cured tobacco and soil enzyme activities[J]. Journal of Henan Agricultural Scien-ces,45(2): 62-66.]
劉曉雨,卞榮軍,陸海飛,鄭聚鋒,程琨,李戀卿,張旭輝,潘根興. 2018. 生物質炭與土壤可持續管理: 從土壤問題到生物質產業[J]. 中國科學院院刊,33(2): 184-190. [Liu X Y,Bian R J,Lu H F,Zheng J F,Cheng K,Li L Q,Zhang X H,Pan G X. 2018. Biochar for sustainable soil management: biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Scien-
ces,33(2): 184-190.]
劉玉學,劉微,吳偉祥,鐘哲科,陳英旭. 2009. 土壤生物質炭環境行為與環境效應[J]. 應用生態學報,20(4): 977-982. [Liu Y X,Liu W,Wu W X,Zhong Z K,Chen Y X. 2009. Environmental behavior and effect of biomass-derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology,20(4): 977-982.]
劉月華,孫玉曉,張英,吳錦志,尹忠春,彭五星. 2016. 不同生物質炭對烤煙青枯病發病情況及煙葉生長的影響[J]. 湖北農業科學,55(10): 2492-2495. [Liu Y H,Sun Y X,Zhang Y,Wu J Z,Yin Z C,Peng W X. 2016. Effects of different biochar on the incidence of tobacco bacterial wilt and flue-cured tobacco growth[J]. Hubei Agricultural Scienses,55(10): 2492-2495.]
牛桂言,邵惠芳,朱金峰,黃五星,許自成,郭利. 2017. 我國植煙土壤修復的研究進展[J]. 中國農業科技導報,19(3): 115-122. [Niu G Y,Shao H F,Zhu J F,Huang W X,Xu Z C,Guo L. 2017. Research progress on tobacco-plan-ting soil restoration in China[J]. Journal of Agricultural Science and Technology,19(3): 115-122.]
潘根興,李戀卿,劉曉雨,程琨,卞榮軍,吉春穎,鄭聚峰,張旭輝,鄭金偉. 2015. 熱裂解生物質炭產業化: 秸稈禁燒與綠色農業新途徑[J]. 科技導報,33(13): 92-101. [Pan G X,Li L Q,Liu X Y,Cheng K,Bian R J,Ji C Y,Zheng J F,Zhang X H,Zheng J W. 2015. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review,33(13): 92-101.]
邱良祝,朱脩玥,馬彪,李戀卿,潘根興. 2017. 生物質炭熱解炭化條件及其性質的文獻分析[J]. 植物營養與肥料學報,23(6): 1622-1630. [Qiu L Z,Zhu X Y,Ma B,Li L Q,Pan G X. 2017. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Plant Nutrition and Fertilizer Science,23(6): 1622-1630.]
穰中文,朱三榮,田峰,袁謀志,陳武,戴林建. 2018. 不同種植模式煙田土壤細菌種群特征與青枯病發生的關系[J]. 湖南農業大學學報(自然科學版),44(1): 33-38. [Rang Z W,Zhu S R,Tian F,Yuan M Z,Chen W,Dai L J. 2018. Relationship between soil bacterial population cha-racteristics and bacterial wilt in tobacco field under diffe-rent planting patterns[J]. Journal of Hunan Agricultural University(Natural Science),44(1): 33-38.]
任天寶,楊艷東,高衛鍇,李宙文,閻海濤,王省偉,劉國順. 2018. 基于高通量測序的生物炭施用量對植煙土壤細菌群落的影響[J]. 河南農業科學,47(12): 64-69. [Ren T B,Yang Y D,Gao W K,Li Z W,Yan H T,Wang S W,Liu G S. 2018. Effects of application amount of biochar on soil bacterial community in tobacco fields based on high-throughput sequencing[J]. Journal of Henan Agricultural Sciences,47(12): 64-69.]
邵慧蕓,張阿鳳,王旭東,郝珊,張艷玲. 2019. 兩種生物炭對烤煙生長、根際土壤性質和微生物群落結構的影響[J]. 環境科學學報,39(2): 537-544. [Shao H Y,Zhang A F,Wang X D,Hao S,Zhang Y L. 2019. Effects of two kinds of biochar on the flue-cured tobacco growth,soil properties and microbial community structure of rhizosphere soil[J]. Acta Scientiae Circumstantiae,39(2): 537-544.]
施河麗,向必坤,譚軍,彭五星,孫玉曉,王瑞,吳文昊,魏國勝,丁才夫. 2018. 煙草青枯病發病煙株根際土壤細菌群落分析[J]. 中國煙草學報,24(5): 57-65. [Shi H L,Xiang B K,Tan J,Peng W X,Sun Y X,Wang R,Wu W H,Wei G S,Ding C F. 2018. Analysis of bacterial community in rhizosphere soil of bacterial wilt diseased tobacco plant[J]. Acta Tabacaria Sinica, 24(5): 57-65.]
孫思,王軍. 2005. 青枯病發病率與土壤條件關系的研究進展[J]. 江西植保,28(1): 17-20. [Sun S,Wang J. 2005. Research progress on the relationship between the incidence of bacterial wilt and soil conditions[J]. Jiangxi Plant Protection,28(1): 17-20.]
王成己,陳慶榮,陳曦,唐莉娜,劉岑薇,宋鐵英,黃毅斌. 2017a. 煙稈生物質炭對煙草根際土壤養分及細菌群落的影響[J]. 中國煙草科學,38(1): 42-47. [Wang C J,Chen Q R,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2017a. Effects of tobacco stalk-derived biochar on rhizosphere soil nutrients and bacterial communities in the tobacco field[J]. Chinese Tobacco Science,38(1): 42-47.]
王成己,李潔靜,黃毅斌. 2018a. 農作物秸稈炭化還田—土壤改良技術研究與應用——以“三聚環保”模式為例[J]. 福建農業科技,(10): 30-35. [Wang C J,Li J J,Huang Y B. 2018a. Research and application of soil improvement technology by returning carbonized crop straw to field——Taking the “Beijing Sanju Environmental Protection” mode as an example[J]. Fujian Agriculture and Technology,(10): 30-35.]
王成己,唐莉娜,黃毅斌. 2018b. 生物質炭調控煙草連作障礙的研究進展[J]. 福建農業科技,(4): 7-12. [Wang C J,Tang L N,Huang Y B. 2018b. Progress in the regulation effe-cts of biochar on continuous cropping obstacles in tobacco[J]. Fujian Agriculture and Technology,(4):7-12.]
王成己,吳志丹,胡忠良,唐莉娜,劉岑薇,黃毅斌. 2017b. 炭化溫度和時間對煙稈生物質炭微觀結構和理化性質的影響[J]. 福建農業學報,32(7): 774-778. [Wang C J,Wu Z D,Hu Z L,Tang L N,Liu C W,Huang Y B. 2017b. Effects of pyrolytic time and temperature on microstructure,physical and chemical properties of biochar made from tobacco straws[J]. Fujian Journal of Agriculture Sciences,32(7): 774-778.]
吳嘉楠,彭桂新,楊永鋒,任天寶,張璐,劉國順. 2018. 生物炭與氮肥配施對土壤生物特性和烤煙氮素吸收的影響[J]. 中國煙草學報,24(3):53-61. [Wu J N,Peng G X,Yang Y F,Ren T B,Zhang L,Liu G S. 2018. Effects of mined biochar and nitrogen fertilizer on biological characteristics of soil and nitrogen absorption of flue-cured tobacco[J]. Acta Tabacaria Sinica,24(3):53-61.]
吳志丹,尤志明,江福英,張磊,黃毅斌,王成己. 2015. 不同溫度和時間炭化茶樹枝生物炭理化特征分析[J]. 生態與農村環境學報,31(4): 583-588. [Wu Z D,You Z M,Jiang F Y,Zhang L,Huang Y B,Wang C J. 2015. Physico-chemical properties of tea-twig-derived biochars different in temperature and duration of pyrolysis[J]. Journal of Ecology and Rural Environment,31(4): 583-588.]
夏體淵,陳澤斌,靳松,趙鳳,王定康,郭麗紅,徐勝光. 2017. 生物炭不同施用量對煙草內生細菌多樣性的影響[J]. 西南農業學報,30(12): 2711-2716. [Xia T Y,Chen Z B,Jin S,Zhao F,Wang D K,Guo L H,Xu S G. 2017. Effect of different biochar application rates on diversity of tobacco endophytic bacteria[J]. Southwest China Journal
of Agricultural Sciences,30(12): 2711-2716.]
夏艷,徐茜,董瑜,林勇,孔凡玉,張成省,王靜,宋毓峰. 2014. 煙草青枯病菌拮抗菌的篩選、鑒定及生防特性研究[J]. 中國生態農業學報,22(2): 201-207. [Xia Y,Xu Q,Dong Y,Lin Y,Kong F Y,Zhang C S,Wang J,Song Y F. 2014. Screening,identification and characterization of antagonistic bacteria against Ralstonia solanacearum[J]. Chinese Journal of Eco-Agriculture,22(2): 201-207.]
向立剛,周浩,汪漢成,李震,陳乾麗,余知和. 2019. 健康與感染青枯病煙株不同部位細菌群落結構與多樣性[J/OL]. 微生物學報. https://doi.org/10.13343/j.cnki.wsxb.2018 0524. [Xiang L G,Zhou H,Wang H C,Li Z,Chen Q L,Yu Z H. 2019. Community structure and diversity of bacteria in different parts of healthy and bacterial wilt toba-cco plants[J/OL]. Acta Microbiologica Sinica. https://doi.org/10.13343/j.cnki.wsxb.20180524.]
肖和友,李宏圖,楊勇,鄧建功,陽雄燦. 2018. 煙草廢棄物生物質炭對植煙土壤、烤煙生長及經濟效益的影響[J]. 湖南農業科學,(6): 36-39. [Xiao H Y,Li H T,Yang Y,Deng J G,Yang X C. 2018. Effects of tobacco waste biochar on the growth and economic benefits of tobacco and tobacco-planting soil[J]. Hunan Agriculture Sciences,(6): 36-39.]
謝永輝,張永貴,朱利全,尤道貴,魯耀. 2015. 煙草黑脛病綜合防治研究進展[J]. 生物技術進展,5(1): 41-46. [Xie Y H,Zhang Y G,Zhu L Q,You D G,Lu Y. 2015. Research advances in integrated management of tobacco black shank[J]. Biotechnology Progress,5(1): 41-46.]
謝祖彬,劉琦,許燕萍,朱春悟. 2011. 生物炭研究進展及其研究方向[J]. 土壤,43(6): 857-861. [Xie Z B,Liu Q,Xu Y P,Zhu C W. 2011. Advances and perspectives of biochar research[J]. Soils,43(6): 857-861.]
許大鳳,倪海軍,季學軍,李田,高正良,王芳,周本國. 2016. 煙草青枯病拮抗菌的篩選及發酵條件試驗[J]. 煙草科技,49(3): 24-29. [Xu D F,Ni H J,Ji X J,Li T,Gao Z L,Wang F,Zhou B G. 2016. Screening and fermentation conditions of antagonistic bacterium against tobacco bacterial wilt[J]. Tobacco Science & Technology,49(3): 24-29.]
姚領愛,胡之璧,王莉莉,周吉燕,黎萬奎. 2010. 植物內生菌與宿主關系研究進展[J]. 生態環境學報,19(7): 1750-1754. [Yao L A,Hu Z B,Wang L L,Zhou J Y,Li W K. 2010. Research development of the relatioship between plant endophyte and host[J]. Ecology and Environmental Sciences,19(7): 1750-1754.]
袁金華,徐仁扣. 2010. 稻殼制備的生物質炭對紅壤和黃棕壤酸度的改良效果[J]. 生態與農村環境學報,26(6): 472-476. [Yuan J H,Xu R K. 2010. Effects of rice hull based biochar regulating acidity of red soil and yellow brown soil[J]. Journal of Ecology and Rural Environment,26(6): 472-476.]
曾維愛,龍世平,李宏光,彭福元,黃艷寧. 2011. 苗期接種不同叢枝菌根真菌對煙草青枯病防治效果的影響[J]. 南方農業學報,42(6): 612-615. [Zeng W A,Long S P,Li H G,Peng F Y,Huang Y N. 2011. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco[J]. Journal of Sou-thern Agriculture,42(6): 612-615.]
張超. 2016. 綠肥—煙草輪作對土壤細菌多樣性和煙草青枯病發生的影響研究[D]. 長沙:湖南農業大學. [Zhang C. 2016. The impacts of green manure-tobacco crop rotation on diversity of soil bacteria and disease occurrence of tobacco bacterial wilt[D]. Changsha:Hunan Agricultural University.]
張弘,李影,張玉軍,朱金峰,劉世亮,申鳳敏,劉芳,姜桂英. 2018. 生物炭對不同氮水平下烤煙生長發育、碳氮代謝及品質的影響[J]. 浙江農業科學,59(2): 224-230. [Zhang H,Li Y,Zhang Y J,Zhu J F,Liu S L,Shen F M,Liu F,Jiang G Y. 2018. Effects of biochar on growth,carbon and nitrogen metabolism and quality of flue-cured tobacco under different nitrogen levels[J]. Journal of Zhe-jiang Agricultural Sciences,59(2): 224-230.]
張璐,閻海濤,任天寶,李帥,楊永鋒,彭桂新,于建春,劉國順. 2019. 有機物料對植煙土壤養分、酶活性和微生物群落功能多樣性的影響[J]. 中國煙草學報,25(2): 55-62. [Zhang L,Yan H T,Ren T B,Li S,Yang Y F,Peng G X,Yu J C,Liu G S. 2019. Effects of organic matter on nu-trient,enzyme activity and functional diversity of microbial community in tobacco planting soil[J]. Acta Tabaca-ria Sinica, 25(2): 55-62.]
張夢旭,潘明明,胡瓏瀚,劉國慶,周開燕,古力,張重義. 2017. 內生菌的功能及在煙草上的研究進展[J]. 煙草科技,50(11): 105-112. [Zhang M X,Pan M M,Hu L H,Liu G Q,Zhou K Y,Gu L,Zhang C Y. 2017. Function of endophytes and their corresponding functions on tobacco[J]. Tobacco Science & Technology,50(11): 105-112.]
張鵬,李盼盼,高林,杜詠梅,劉新民,張忠鋒,申國明. 2017. 煙草內生真菌多樣性及其功能研究進展[J]. 中國煙草科學,38(2): 93-99. [Zhang P,Li P P,Gao L,Du Y M,Liu X M,Zhang Z F,Shen G M. 2017. Research advances on biodiversity and functions of tobacco endophytic fungi[J]. Chinese Tobacco Science,38(2): 93-99.]
章文水,張瀛,王雪仁,林建麒. 2019. 不同土壤改良措施對植煙土壤理化性狀及煙草青枯病的影響[J]. 中國煙草科學,40(2):16-22. [Zhang W S,Zhang Y,Wang X R,Lin J Q. 2019. Effects of different soil improvement measures on physicochemical properties of soil and bacterial wilt of tobacco[J]. Chinese Tobacco Science,40(2): 16-22.]
鄭世燕,丁偉,陳弟軍,杜根平,徐小洪,謝華東. 2013. 根際土壤調控對連作煙田青枯病的控制作用[J]. 中國煙草學報,19(1): 47-52. [Zheng S Y,Ding W,Chen D J,Du G P,Xu X H,Xie H D. 2013. Bacterial wilt control in continuously cropped tobacco field by manipulation of rhizosphere soil[J]. Acta Tabacaria Sinica, 19(1): 47-52.]
鄭世燕,丁偉,杜根平,楊亮,劉曉姣,張永強. 2014. 增施礦質營養對煙草青枯病的控病效果及其作用機理[J]. 中國農業科學,47(6): 1099-1110. [Zheng S Y,Ding W,Du G P,Yang L,Liu X J,Zhang Y Q. 2014. Control efficacy and action mechanism of mineral nutrition on tobacco bacterial wilt[J]. Scientia Agricultura Sinica,47(6): 1099-1110.]
Antal M J,Gronli M. 2003. The art,science and technology of charcoal production[J]. Industrial and Engineering Che-mistry,42: 1619-1640.
Bonilla N, Gutiérrez-Barranquero J A, de Vicente A, Francisco M C. 2012. Enhancing soil quality and plant health through suppressive organic amendments[J]. Diversity,4(4): 475-491.
Chen S,Qi G F,Luo T,Zhang H C,Jiang Q K,Wang R,Zhao X Y. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils[J]. Land Degradation & Development,29(11): 4106-4120.
Chun Y,Sheng G Y,Cary T C,Xing B S. 2004. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology,38(17): 4649-4655.
Cornelissen G,Kukulska Z,Kalaitidis S,Christanis K,Gustafsson O. 2004. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science and Technology,38(13): 3632-3640.
Dordas C. 2008. Role of nutrients in controlling plant disease in sustainable agriculture: A review[J]. Agronomy for Sustainable Development,28(1): 33-46.
Li X G,Ding C F,Zhang T L,Wang X X. 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut mono culturing[J]. Soil Biology and Biochemistry,72: 11-18.
Liu Y X,Li X,Cai K,Cai L T,Lu N,Shi J X. 2015. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology,93:78-87.
McGarvey J A,Denny T P,Schell M A. 1999. Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars[J]. Phytopathology,89(12): 1233-1239.
Ozcimen D. 2010. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy,35: 1319-1324.
Wang M,Zheng Q S,Shen Q R,Guo S W. 2013. The critical role of potassium in plant stress response[J]. Internatio-nal Journal of Molecular Sciences,14(4): 7370-7390.
Wu P,Ata-Ul-Karim S T,Singh B P,Wang H L,Wu T L,Liu C,Fang G D,Zhou D M,Wang Y J,Chen W F. 2019. A scientometric review of biochar research in the past 20 years(1998–2018)[J]. Biochar,1(1): 23-43.
(責任編輯 麻小燕)