趙道印 寧旭 汪健
[摘要] 骨組織工程包括三個主要的因素,即用于成骨的干細胞、用于骨誘導的生長因子和用于骨傳導的可降解生物支架。間充質干細胞在修復骨缺損方面已經取得了顯著的成功,并且他們的安全性在一些臨床前實驗中也得到證實。脂肪來源間充質干細胞(ADSCs)可分化為成骨細胞、軟骨細胞和脂肪細胞,且與骨髓間充質干細胞(BMSCs)具有相似的分化潛能,且獲取方式微創,同時產量也比BMSCs多,具有廣泛的臨床應用前景。
[關鍵詞] 骨組織工程;脂肪來源干細胞;骨修復
[中圖分類號] R329.2? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2019)07(b)-0049-04
Research advances of adipose-derived stem cells on bone repair
ZHAO Daoyin1? ?NING Xu2? ?WANG Jian2
1.Guizhou Medical University, Guizhou Province, Guiyang? ?550004, China; 2.Department of Orthopedics, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang? ?550004, China
[Abstract] Bone tissue engineering consists of three main factors: stem cells for osteogenesis, growth factors for bone induction and biodegradable scaffolds for bone conduction. Mesenchymal stem cells have achieved significant success in repairing bone defects, and their safety has been demonstrated in a number of preclinical trials. Adipose-derived stem cell (ADSCs) can also differentiate into osteoblasts, chondrocytes, myocytes and adipocytes, and they have similar differentiation potential to BMSCs with a minimally invasive approach. Meanwhile, their yield is also higher than BMSCs, which has a broad clinical application prospect.
[Key words] Bone tissue engineering; Adipose-derived stem cells; Bone repair
骨組織工程包括干細胞、生長因子和生物支架。間充質干細胞(MSCs)首先從骨髓中分離出來,能夠向成骨、軟骨和脂肪分化,脂肪組織、結締組織、滑液、臍帶、羊水和胎盤等組織中也可分離出MSCs,并證實有多向分化潛能[1-2]。MSCs可分為骨髓MSCs(BMSCs)、脂肪來源MSCs(ADSCs)、血管周圍干細胞(PSCs)、誘導多能干細胞(iPSCs)。其中BMSCs為骨組織工程中最常用的種子細胞,但存在獲取有創、產量低、供區感染等不足,限制了其臨床應用[3]。ADSCs與BMSCs具有相似的多向分化潛能,其獲取微創,同時產量也較BMSCs多[4],具有更為廣泛的臨床應用前景。
1 ADSCs的成骨分化潛能
骨再生方案的細胞療法中,ADSCs是最有前景的干細胞之一,體內外實驗均證實了ADSCs能夠分化為成熟的成骨細胞,且可通過旁分泌效應來促進自體前體細胞的遷移和分化來促進新生骨形成。常用的體外成骨誘導劑有地塞米松、抗壞血酸、β-甘油磷酸鈉,其中抗壞血酸和地塞米松的濃度可以影響ADSCs成骨效果[5-6]。
ADSCs可以分泌一些生物活性分子,通過旁分泌功能,為組織修復建立良好的微環境,從而促進新生血管形成和傷口愈合,同時可以減少組織的炎性反應[7];ADSCs也可分泌促進血管生成和抗凋亡潛能的生長因子,如轉化生長因子(TGF)、胰島素樣生長因子(IGF)、血管內皮生長因子(VEGF)和肝細胞生長因子(HGF)[8]。骨形態發生蛋白(BMP)是TGF-β超家族的一員,為一種有效的骨誘導分子,其中BMP-2、BMP-4、BMP-6、BMP-7、BMP-9已被證實擁有成骨能力[9],聯合應用ADSCs和BMP-2,可明顯誘導新骨形成[6]。VEGF被認為是血管生成的主要調節劑,可以通過募集干細胞、增強內皮細胞的存活和分化,誘導新的毛細血管網絡的形成,從而促進組織再生[9],它們的聯合可進一步增強脂肪干細胞的遷移、黏附和增殖能力[10]。
2 與富含血小板血漿(PRP)聯合應用
PRP是各種生長因子和細胞因子的天然組合,由自體血分離而來,制備簡單,而且避免了傳染性疾病和免疫相關疾病的風險,包含PDGF、TGF、IGF、VEGF和HGF,可促進內皮細胞增殖和遷移、促進血管生成和骨再生[11]。他們可通過與MSCs、成纖維細胞、成骨細胞和內皮細胞上的受體結合,從而對組織修復發揮作用[12]。PRP預處理的ADSCs具有內皮細胞特性,可顯著促進新生血管形成[13],與脂肪干細胞聯合可有效的促進脂肪干細胞的增殖和成骨分化[14],促進骨組織再生[15],PRP的制備方法會影響ADSCs的增殖、分化等生物學效果[16]。
3 細胞共培養
誘導后的脂肪干細胞與其他間充質干細胞共培養時可以提高其成骨能力,且不同的間充質干細胞對其成骨能力影響的效果也不同[17]。BMSC與ADSC共培養時較單一培養成骨能力強[18],能促進骨再生和血管形成[19]。ADSCs與內皮細胞共培養同樣可以增加成骨能力[20]。ADSCs的共培養為骨組織工程提供了有效的方法。
4 ADSCs與支架復合體內移植
支架為骨組織形成提供骨傳導空間,接種種子細胞,人工合成的支架應該模擬正常骨組織的形態和結構,優化與周圍組織整合率,并為干細胞的黏附和增值提供良好的微環境。
4.1 羥基磷灰石(HA)
HA與天然骨中無機鹽成分很接近,具有良好的生物活性、骨傳導性,能為新生骨組織提供基礎離子,但脆性較大、骨誘導活性較低且降解時間長等,因此HA常與其他材料聯合使用來提高復合材料的機械性,骨傳導性,生物降解性及生物活性等綜合性能[21-22]。HA支架與ADSCs的聯合可以增加HA的吸收,且新生骨更加成熟更加類似于天然骨[23]。
4.2 Beta-磷酸三鈣(β-TCP)
β-TCP的成分與骨基質的無機成分相似,降解釋放的鈣和磷有助于新骨形成。ADSCs聯合β-TCP可以促進骨形成,增加骨修復的效果,且沒有明顯并發癥[24]。雙相磷酸鈣(BCP)是HA和β-TCP的混合物,兩者的聯合優化材料的性能,還可以通過調整兩者的比例來控制材料的成骨、降解等性能,從而達到更好地修復骨缺損的目的,如BCP20/80的成骨及血管分化潛能較BCP60/40有所提高[25]。王騰飛等[26]制備的HA/β-TCA復合物支架,具有較好的生物相容性、降解性、骨傳導性和良好的孔隙率,利于ADSCs與材料復合,能明顯促進骨缺損的修復,甚至,ADSCs聯合HA/β-TCP修復骨缺損能力要優于ADSCs/同種異體骨[27]。
4.3 高分子材料
高分子材料具有良好的生物降解性、生物相容性、孔隙率及孔徑且無毒,能夠被塑造為三維支架,利于脂肪干細胞生長增殖,促進血管和骨組織的生成,加快骨愈合,唐星宇等[28]制備的ADSCs/聚乳酸共聚物,能增加骨密度,促進新骨形成及骨愈合,效果要優于ADSCs組。聚乳酸/聚羥基乙酸共聚物(PLGA)具有優良的生物相容性及力學特性,且來源廣泛,獲取容易,無明顯毒性及免疫原性,使其成為理想的骨支架材料。
4.4 3D打印支架
3D打印技術在醫學領域得到廣泛應用,3D打印支架可以促進ADSCs的成骨分化[29],Lee等[30]通過3D打印技術,制備了聚乳酸-羥基乙酸共聚物(PLGA)支架,然后將ADSCs接種于該支架上修復大鼠下頜骨缺損,12周后發現骨缺損處愈合。宋楊等[31]將ADSCs加入海藻酸鈉和明膠混合物中,利用3D生物打印技術,構建細胞-海藻酸鈉-明膠共混物打印體,經檢測打印體中細胞存活率達到89%左右,且可體內成骨;Kang等[32]將ADSCs與聚己內酯/磷酸三鈣共打印用于骨缺損處,取得了良好的骨整合和修復。
5 ADSCs的臨床應用:
ADSCs臨床應用取得一定效果,Lendechel等[33]用自體ADSCs聯合髂骨及支架治療了一名創傷性顱骨缺損的7歲女孩,術后3個月顯示新骨形成和接近連續的骨再生。S?觃ndor等[34]用ADSCs對下頜骨缺損進行了成功的重建。骨腫瘤患者切除術后導致的骨缺損或者骨不連[35],同樣可以使用ADSCs聯合支架進行重建,Mesim?覿ki等[36]用自體ADSCs與重組人BMP-2和β-TCP顆粒組合治療成人患者良性腫瘤切除術引起的上頜骨缺損,在手術重建缺損4個月后,得到了成熟的血管化骨,具有良好的整合性和穩定性。郭恩琪等[37]用ADSCs成功完成了9例創傷性骨皮膚復合組織缺損的骨修復,包括顱骨、橈骨、肱骨及脛骨,分兩期修復,9例骨缺損患者均取得了有效的骨再生,為復合組織損傷合并大塊骨缺損的患者提供了新的治療方法。
6 小結
骨組織工程中ADSCs是最有前景干細胞之一,基于ADSCs的骨再生有很多優勢,為了確保成功的臨床應用,需要進一步發展微創的分離方法和手術過程。細胞聯合支架可以更好地促進血管和骨再生,為了取得更好的臨床效果,發展具有骨誘導及骨傳導特性的生物支架聯合干細胞及生物活性因子的復合體顯得尤為重要。ADSCs在臨床應用上取得的成功為骨修復提供了一種有前景的治療方法,但仍需大量的臨床前期研究來進一步證實其安全性和有效性。
[參考文獻]
[1]? Park JS,Suryaprakash S,Lao YH,et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery [J]. Methods,2015,84:3-16.
[2]? Bajek A,Olkowska J,Gurtowska N,et al. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine [J]. Expert Opin Biol Ther,2014,14(6):831-839.
[3]? Hernigou P,Trousselier M,Roubineau F,et al. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress [J]. Clin Orthop Surg,2016,8(1):1-8.
[4]? Li Q,Wang T,Zhang GF,et al. A comparative evaluation of the mechanical properties of two calcium phosphate/collagen composite materials and their osteogenic effects on adipose-derived stem cells [J]. Stem Cells Int,2016, 2016:1-12.
[5]? de Girolamo L,Sartori MF,Albisetti W,et al. Osteogenic differentiation of human adipose-derived stem cells:comparison of two different inductive media [J]. J Tissue Eng Regen Med,2007,1(2):154-157.
[6]? Wang ZL,He RZ,Tu B,et al. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal Necrosis in Juvenile rabbits [J]. Curr Med Sci,2018,38(2):277-288.
[7]? Zhu Z,Yuan Z,Huang C,et al. Pre-culture of adipose-derived stem cells and heterologous acellular dermal matrix: paracrine functions promote post-implantation neovascularization and attenuate inflammatory response [J]. Biomed Mater,2019,14(3):035002.
[8]? Tajima S,Tobita M,Orbay H,et al. Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration [J]. Tissue Eng (Part A),2015,21(5/6):895-905.
[9]? Li B,Wang H,Qiu G,et al. Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo:influencing factors and future research directions [J]. Biomed Res Int,2016,2016:2869572.
[10]? 高潔,王明國,楊帥,等.不同生長因子對脂肪干細胞生物學行為的影響[J].中國組織工程研究,2015,19(19): 3010-3016.
[11]? Wen YH,Lin WY,Lin CJ,et al. Sustained or higher levels of growth factors in platelet-rich plasma during 7-day storage [J]. Clin Chim Acta,2018,483:89-93.
[12]? Dhurat R,Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author′s perspective [J]. J Cutan Aesthet Surg,2014,7(4):189-197.
[13]? Chen CF,Liao HT. Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model [J]. World J Stem Cells,2018,10(12):212-227.
[14]? Cvetkovi?VJ,Najdanovi?JG,Vukeli-Nikoli?M,et al. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model [J]. Int Orthop,2015,39(11):2173-2180.
[15]? Shafieian R,Matin MM,Rahpeyma A,et al. Effects of human adipose-derived stem cells and platelet-rich plasma on healing response of canine alveolar surgical bone defects [J]. Arch Bone Jt Surg,2017,5(6): 406-418.
[16]? 胡育瑄,何家才.不同方法制備富血小板血漿對兔脂肪干細胞增殖和成骨分化能力的影響[J].安徽醫科大學學報,2018,53(8):1184-1190.
[17]? 孫仕晨,董騰哲,黃昕,等.Transwell共培養條件下誘導脂肪干細胞成骨能力的改變[J].中國組織工程研究,2016, 20(28):4155-4161.
[18]? 楊民,鄭偉偉,林程.骨髓間質干細胞和脂肪間質干細胞混合培養后的成骨能力[J].中華骨科雜志,2016,36(23):1524-1532.
[19]? Kang ML,Kim JE,Im GI. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells [J]. J Tissue Eng Regen Med,2017,11(12):3337-3348.
[20]? Zhao X,Liu L,Wang FK,et al. Coculture of vascular endothelial cells and adipose-derived stem cells as a source for bone engineering [J]. Ann Plast Surg,2012,69(1):91-98.
[21]? Souza DC,Abreu HLV,Oliveira PV,et al. A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation [J]. J Mech Behav Biomed Mater,2019, 93:93-104.
[22]? Fang J,Li P,Lu X,et al. A strong,tough,and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration [J]. Acta Biomater,2019,88:503-513.
[23]? de Girolamo L,Arrigoni E,Stanco D,et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects [J]. J Orthop Res,2011,29(1):100-108.
[24]? Thesleff T,Lehtimki K,Niskakangas T,et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction [J]. Neurosurgery,2011, 68(6):1535-1540.
[25]? Van Esterik FA,Zandieh-Doulabi B,Kleverlaan CJ,et al. Enhanced osteogenic and vasculogenic differentiation potential of human adipose stem cells on biphasic calcium phosphate scaffolds in fibrin gels [J]. Stem Cells Int,2016,2016:1934270.
[26]? 王騰飛,宋興華,麥麥提艾力·阿不力克木,等.脂肪干細胞與羥基磷灰石/β-磷酸三鈣復合體修復兔椎體缺損[J].中國組織工程研究,2018,22(13):2081-2086.
[27]? 龍志成,宋興華,龍仕杰,等.脂肪干細胞復合HA/β-TCP與同種異體骨修復兔脊柱骨缺損的比較[J].中國矯形外科雜志,2018,26(2):164-169.
[28]? 唐宇星,趙慶,楊中萌,等.聚乳酸共聚物復合脂肪干細胞對骨質疏松性骨折愈后生物力學的影響[J].中國組織工程研究,2017,21(10):1577-1582.
[29]? Park H,Kim JS,Oh EJ,et al. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells[J].Arch Craniofac Surg,2018,19(3):181-189.
[30]? Lee MK,DeConde AS,Lee M,et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects [J]. Am J Otolaryngol,2015,36(1):1-6.
[31]? 宋楊,王曉飛,王宇光,等.人脂肪間充質干細胞與生物材料共混物三維打印體的體內成骨[J].北京大學學報:醫學版,2016,48(1):45-50.
[32]? Kang HW,Lee SJ,Ko IK,et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity [J]. Nat Biotechnol,2016,34(3):312-319.
[33]? Lendeckel S,Jdicke A,Christophis P,et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report [J]. J Craniomaxillofac Surg,2004,32(6):370-373.
[34]? Sándor GK,Tuovinen VJ,Wolff J,et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration [J]. J Oral Maxillofac Surg,2013,71(5):938-950.
[35]? Dufrane D,Docquier PL,Delloye C,et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept [J]. Medicine (Baltimore),2015,94(50):1-10.
[36]? Mesimki K,Lindroos B,Trnwall J,et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells [J]. Int J Oral Maxillofac Surg,2009, 38(3):201-209.
[37]? 郭恩琪,謝慶平,朱孜冠,等.嚴重復合組織缺損皮瓣修復術后應用自體脂肪干細胞構建組織工程骨重建骨支架[J].中華顯微外科雜志,2017,40(3):213-217.