999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義逆矩陣A-研究

2019-10-12 02:14:30張愛萍
安陽工學院學報 2019年4期
關鍵詞:性質定義

張愛萍

(呂梁學院汾陽師范分校數學與科學系,山西汾陽032200)

近年來,隨著電子計算機技術的快速發展,帶動了計算科學的發展,使Moore和Penrose分別于1920年和1955年提出的廣義逆矩陣的理論更加趨于完善,推動了廣義逆矩陣向新的研究階段邁進[1]。人們為使之適用于研究各類數學問題做了大量的相關工作,如今廣義逆矩陣已經成為矩陣分析的基礎之一,也是矩陣論的一個重要分支,廣泛地應用于控制理論、系統識別和優化理論等領域[2]。

1 廣義逆矩陣概述

廣義逆矩陣的概念是在相容線性方程組的解的基礎上建立的,這也就是Moore關于廣義逆矩陣的定義。

定義1[3]對于一個m×n矩陣A,若存在一個n×m矩陣G,使得

其中,PA和PG.分別是Rm的沿R(A)⊥到R(A)的正交投影變換的矩陣及Rm的沿R(G)⊥到R(G)的正交投影變換的矩陣,則稱G為A的廣義逆矩陣。

除了定義1從解方程組的角度來建立廣義逆矩陣的概念之外,還可以從矩陣的運算關系上建立廣義逆矩陣的概念。這也正是Penrose提出的關于廣義逆矩陣的定義。

定義2[3]對于一個m×n矩陣A,若存在一個n×m矩陣G,使得

則稱G為A的廣義逆矩陣。

下面的定理1表明,上述的定義1和定義2實際上是等價的。

定理1Moore和Penrose關于廣義逆矩陣的兩種定義實際上是等價的。

證明先由定義1推出定義2中的式(2)成立。事實上,因為對任意的X∈Rm,恒有AX∈R(A),再結合式(1)中的(i)式,可知

成立。又因為正交投影變換PA的矩陣AG實對稱矩陣,所以式(2)中的(iii)自然成立。同理,由式(1)中的(ii)及GA是正交投影變換PG的矩陣,可以推得式(2)中的(ii)式及(iv)式的成立。

再證由式(2)反推式(1)也是成立的。由于G滿足式(2)中的(i)與(iii)式,可以推得

因此,AG是一個冪等矩陣,同時也是一個對稱矩陣,它所對應的線性變換也因而是一個正交投影變換。還由于

所以,AG的值域為R(A),并且AG在R(A)上相當于恒等變換。這表明AG所表示的正交投影變換是Rm的沿R(G)⊥到R(G)的投影變換PA,即

成立。同理,由式(2)中的(ii)與(iv)式也可推得

成立。

2 廣義逆矩陣A-及其等價命題

定理2對于給定的A∈Cm×n,則A滿足方程

的廣義逆矩陣A-存在的充分必要條件是對于任何的b∈R(A),A-1b都是方程組

的一個解,其中R(A)為A的列空間。

證明設A=(a1,a2,...,an),其中ai為A的第i列,i∈.若存在矩陣A-,使?b∈R(A),A-b都為式(4)的解,則應有AA-b=b對所有b∈R(A)成立,特別應有AA-ai=ai,i∈.因此有

即AA-A=A。

反之,設存在A-使式(3)成立,即AA-A=A。因為對于任何b∈R(A),一定存在X∈Cn,使AX=b。對于AA-A=A兩邊同時右乘X,即可得AA-AX=AX.由式AX=b有

所以A-b是式(4)的一個解。證畢。

定理2實際上給出了廣義逆矩陣A-的等價命題。可以把式(3)作為廣義逆矩陣A-的定義。

廣義逆矩陣A-具有以下性質[4]:

性質1設A∈Cm×n,A-=A(1)∈A{1},則(A-)T∈AT{1},(A-)H∈AH{1}.

證明先證后式。由AA-A=A,兩端取共軛轉置可得AH(A-)HAH=AH,這說明了(A-)H是AH的減號逆,所以(A-)H∈AH{}1.而前式為后式的特例。證畢。

性質3設A∈Cm×n,則rankA≤rankA-.

證明rankA-≥rank(AA-)≥rank(AA-A)=rankA.

性質4AA-和A-A是冪等矩陣,并且rank(AA-)=rank(A-A)=rankA.

所以,AA-和A-A都是冪等矩陣,并且也都是投影矩陣。又因為rank(A-A)=rankA,并且AA-A=A,所以rankA=rank(AA-A)≤rank(AA-),這時就有rankA=rank(AA-).

同理可證rankA=rank(A-A).

性質5AA-=Im的充分必要條件是rankA=m,即A行滿秩。此時A-稱為A的右逆,記為的充分必要條件是rankA=n,即A列滿秩。此時A-稱為A的左逆,記為.

證明必要性。由AA-=Im,根據性質4,有rank(AA-)=rankA,而rank(AA-)=rankIm=m.因此,rankIm=m,即A行滿秩。

充分性。由rankIm=m,于是rank(AA-)=rankA=m.因為AA-是m階方陣,所以AA-是滿秩陣,因此有逆。同樣,由性質4可知,AA-是冪等陣,因此

(AA-)(AA-)=(AA-)。

上式兩端左乘(AA-)-1,可得AA-=Im。

同理可證A-A=In的充分必要條件是rankA=n。

3 廣義逆矩陣A-的存在性及求法

是A滿足方程(3)的廣義逆矩陣A-,其中,L1∈Cr×(m-r),L2∈C(n-r)×(m為-r)任意矩陣。

證明因為rankA=r,所以有初等變換矩陣P,使得

由于A2∈Cm×(n-r)的列都能用A1的列線性表示,因此存在矩陣C∈Cr×(n-r),使得A2=A1C。于 是P=A1(Ir,C).又由于rankA=r,因此存在初等變換矩陣,使得

由于A21∈C(m-r)×r的列都能用A11的行線性表示,因此存在矩陣B∈C(m-r)×r,使得A21=BA11.于是有

另一方面,由L1,L2的任意性可知,矩陣A的廣義逆矩陣A-一般不是唯一的。特別的,若取L1=0,L2=0,則可得到一個特殊的廣義逆矩陣為

由上述討論可知,矩陣A的全體廣義逆矩陣A-=A(1)所組成的集合應為A{1},也稱減逆。

在實際計算中,有許多計算A-的方法,下面介紹一種常見的求A-的公式。[6]

情形1設秩A=r,并且A的左上角的r階子塊為滿秩,即

將式(5)直接代入AA-A=A驗證即可。

情形2設秩A=r,但A的左上角的r階子塊Arr不滿秩。這時若有初等列變換(P為相應的初等矩陣)使得AP=,而的左上角r階子塊Arr為滿秩的,則有

然后再由(AP)-=P-1A-,即可求得

因此當A的左上角無滿秩的r階子塊時,需要先對A施行某種列變換,使其左上角r階子塊變為滿秩的,然后再由式(6)對()-施行相同的初等列變換,即可得到A-。同樣的,對A先作行變換變形,再做相應的列變換還原,也可以得到A-。

解 將A的第二列與第三列交換得

于是由式(5)可求得

將其代入式(6)(也就是交換()-中的第二行與第三行)即得。

4 結語

本文對廣義逆矩陣A-的概念、性質、存在性及求法進行了探討,給出了廣義逆矩陣A-的一個等價命題,并給出了一種求廣義逆矩陣A-的常用方法。通過對矩陣A作簡單的初等列變換,可以很方便地求出矩陣的廣義逆矩陣A-。

猜你喜歡
性質定義
一類非線性隨機微分方程的統計性質
數學雜志(2021年6期)2021-11-24 11:12:00
隨機變量的分布列性質的應用
一類多重循環群的剩余有限性質
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
完全平方數的性質及其應用
中等數學(2020年6期)2020-09-21 09:32:38
定義“風格”
九點圓的性質和應用
中等數學(2019年6期)2019-08-30 03:41:46
厲害了,我的性質
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 亚洲 日韩 激情 无码 中出| 99精品在线看| 国产激爽爽爽大片在线观看| 国产成人精彩在线视频50| 国产丝袜91| 亚洲免费三区| 欧美国产日本高清不卡| 日韩精品毛片人妻AV不卡| 国产精品视频系列专区| a毛片免费看| 久久无码av一区二区三区| 亚洲精品综合一二三区在线| 最新无码专区超级碰碰碰| 国产精品专区第1页| 亚洲A∨无码精品午夜在线观看| 国产迷奸在线看| 免费午夜无码18禁无码影院| 久久国产高潮流白浆免费观看| 日本伊人色综合网| 国产精品太粉嫩高中在线观看 | 国产精品99在线观看| 国产一区二区精品福利| 天天综合网色| 国产精品主播| 亚洲AⅤ波多系列中文字幕| 中字无码精油按摩中出视频| 国产免费羞羞视频| 亚洲性一区| 在线观看国产精品日本不卡网| 亚洲日韩精品伊甸| 69av免费视频| 91成人在线观看| 久久综合结合久久狠狠狠97色| 国产成人艳妇AA视频在线| 国产福利一区二区在线观看| 第一区免费在线观看| 午夜视频免费试看| 99精品热视频这里只有精品7| 福利视频99| 青青青伊人色综合久久| 国模极品一区二区三区| 日本午夜影院| 亚洲精品久综合蜜| 综合色区亚洲熟妇在线| 国产亚洲精品yxsp| 亚洲一级毛片在线观| 亚洲欧美一区二区三区蜜芽| 国产高潮流白浆视频| 亚洲精品日产精品乱码不卡| 亚洲区视频在线观看| 黄片一区二区三区| 在线国产三级| 99热这里只有免费国产精品| 在线国产资源| 国产95在线 | 亚洲性网站| 97国产在线视频| 亚洲精品自在线拍| 国产女人在线| 国产成人精品无码一区二| 国产欧美又粗又猛又爽老| 伊人精品成人久久综合| 国产69精品久久久久孕妇大杂乱| 亚洲欧美在线综合一区二区三区| 一级做a爰片久久毛片毛片| 伊人91在线| 婷婷中文在线| 久久a毛片| 中国国产高清免费AV片| 日韩色图在线观看| 欧美精品二区| 毛片手机在线看| 亚洲综合专区| 欧美成人国产| 亚洲天堂免费观看| 就去吻亚洲精品国产欧美| av在线无码浏览| 亚洲av综合网| 日韩福利在线视频| 国产黄色视频综合| 久久香蕉国产线看观看式| 国产欧美日韩va|