霍煜豪 徐志京



摘要:針對光電圖像中艦船分類檢測困難的問題,提出一種基于改進循環(huán)注意卷積神經(jīng)網(wǎng)絡(luò)(recurrent attention convolutional neural network,RA-CNN)的艦船目標(biāo)識別方法。該方法中的VGG19采用多個卷積層提取圖像特征,注意建議網(wǎng)絡(luò)(attention proposal network,APN)通過全連接層的輸出定位特征區(qū)域,然后采用尺度依賴池化(scale-dependent pooling,SDP)算法選擇VGG19中合適的卷積層輸出進行類別判定,最后引入多特征描述特征區(qū)域,交叉訓(xùn)練VGG19和APN來加速收斂和提高模型精度。利用自建艦船數(shù)據(jù)集對方法進行測試,識別準(zhǔn)確率較VGG19和RA-CNN有較大提升,識別準(zhǔn)確率最高可達(dá)86.7%。
關(guān)鍵詞:艦船識別; 細(xì)粒度圖像分類; 循環(huán)注意卷積神經(jīng)網(wǎng)絡(luò)(RA-CNN); 尺度依賴池化(SDP); 交叉訓(xùn)練
中圖分類號: U674.7; TP391.413
文獻(xiàn)標(biāo)志碼: A
Abstract: Aiming at the difficulty of classification and detection of ships in photoelectric images, a ship target identification method based on the improved recurrent attention convolutional neural network (RA-CNN) is proposed. The VGG19 in the method uses multiple convolutional layers to extract image features. The attention proposal network (APN) locates the feature region through the output of the fully connected layer, and then uses the scale-dependent pooling (SDP) algorithm to select the appropriate convolution in VGG19 for class determination. The multiple features are introduced to describe feature regions. The VGG19 and APN are cross-trained to accelerate the convergence and improve the accuracy. The method is tested using the self-built ship database of the model. The identification accuracy of the method is higher than that of VGG19 and RA-CNN, and the highest identification accuracy is 86.7%.
0 引 言
艦船光電圖像是由不同成像系統(tǒng)觀測得到的模擬或數(shù)字艦船圖像。傳統(tǒng)艦船光電圖像多來源于衛(wèi)星遙感觀測系統(tǒng),易受云層遮擋影響且觀測角度均為俯視,魯棒性和時效性都存在不足。現(xiàn)階段隨著無人機逐步發(fā)展,通過高性能機載光電設(shè)備獲取艦船光電圖像變得更加容易且更具時效性,清晰度也大幅提升,通過控制還可以獲得艦船各種角度圖像,在軍事偵察、預(yù)警等領(lǐng)域具有極為重要的應(yīng)用價值。同時,由于船種繁多,同船種之間又派生出各種型號,相互之間差異細(xì)微,使得快速精準(zhǔn)分辨艦船類別、及時預(yù)警出警成為一個研究難題。
鑒于以上所述艦船光電圖像特點,將艦船分類歸屬于細(xì)粒度圖像分類[1]范疇。國內(nèi)外學(xué)者多通過深度學(xué)習(xí)技術(shù)解決艦船光電圖像分類問題。……