崔姣妍 張瓊瑤
摘 ?????要:攪拌棒吸附萃取SBSE是一種新型微型化的樣品前處理技術,普遍應用于痕量有機物的富集。其具有有機溶劑用量小、不需進一步蒸發濃縮、減少了對環境的污染的優點。由于其涂層材料的局限性,為擴大SBSE技術的應用范圍。近年來,人們都在開發新型SBSE極性涂層材料。闡述了新型攪拌棒涂層的種類、制備進展。
關 ?鍵 ?詞:SBSE;合成;涂層材料
中圖分類號:O652.6 ??????文獻標識碼: A ??????文章編號: 1671-0460(2019)01-0111-04
Abstract: ?Stir bar sorptive extraction SBSE is a new type of miniaturized sample pretreatment technology, which is widely used in the enrichment of trace organics. It has the advantages of small using amount of organic solvent, no need of further evaporation, and less pollution to the environment. Due to the limitations of its coating materials, the application of SBSE technology is restricted. In recent years, new types of SBSE polar coating materials have been developed. In this paper, types, preparation methods and application of new stir bar coating material were reviewed.
Key words: SBSE; synthesis; coating material
傳統的樣品前處理方法存在操作繁瑣,且多為手工操作,所需分析時間較長,同時消耗較多的有機溶劑等缺點。用于液體樣品分析的傳統液液萃取(LLE)進一步被耗時較少的固相萃取(SPE)所取代,萃取效率增加,簡化樣品操作,減少樣品和有機溶劑的使用量,使分析裝置小型化,并消除復雜基質的干擾成為樣品預處理的目的。如今,發展的新型吸附萃取技術(SPME),攪拌棒吸附萃取(SBSE)或填充吸附劑微萃取技術和新型溶劑萃取技術等[1-4]。
1 ?攪拌棒吸附萃取技術
攪拌棒吸附萃取SBSE是一項新型微型化的樣品前處理技術,由固相微萃取技術演化發展而來,在其表面涂布不同材料以獲得更好的富集因子,提供更好的吸附相和更高的表面積,具有更大的萃取能力。傳統的SBSE是一種將聚二甲基硅氧烷(PDMS)吸附劑涂覆在磁力攪拌棒的外層上,將其放置在液體樣品中吸附有機化合物,然后進行解吸。
首先是溶劑解吸,將攪拌棒置于溶液中以解吸分析物成分,產生濃縮物。第二個是熱解吸,需使用專門的熱脫附儀(TDU)進行脫附,然后進入檢測系統進行測量分析,這是氣相色譜常用的[4-6]。可根據被測樣品的性質選擇解析的方式。其他方面,攪拌棒吸附萃取有許多因素的控制,例如攪動速率,溫度影響,樣品體積等。因此,在實驗中必須優化適合的萃取條件。1998年Erik Baltussen首次提出攪拌棒萃取,在含有疏水性吸附劑的磁力攪拌棒上萃取50種化合物。利用自動吸附萃取 -熱解吸-氣體色譜-質譜分析:測定水樣中的酚類化合物[7]。T?lgyessy, SNagyov, M,使用PDMS攪拌棒吸附萃(SBSE)與熱脫附-氣相色譜-三重串聯四極桿串聯質譜(TD-GC-QqQMS/ MS)用于測定水中短鏈氯化石蠟(SCCPs),由于短鏈氯化石蠟的非極性,使PDMS攪拌棒吸附萃取回收率較高[8]。雖然SBSE有很多的優點包括操作簡單,預濃縮因子高等。但是隨著發展,人們發現SBSE的主要的缺點是商業數量的減少,僅限于聚二甲基硅氧烷,PDMS是一個非極性材料,根據相似相溶原理,它不適用于萃取極性化合物,尤其是具有log Kow值低于3的化合物。當使用PDMS攪拌棒涂布時,極性化合物的回收率差。為了克服這個限制,制備合適的SBSE極性涂層材料至關重要。現今,烷基-二醇-二氧化硅材料(RAM),聚氨酯,PDMS /聚吡咯和PDMS/β-環糊精的開發,擴展了SBSE對極性溶質的適用性[9]
2 ??攪拌棒涂層合成方法
到目前為止,大部分人都在開發新型SBSE極性涂層材料和合成策略。首先是溶膠-凝膠技術,用β-環糊精修飾PDMS的新型材料來吸附水樣中的雌激素和雙酚A [10]或基于用聚乙烯醇提取蜂蜜中的有機磷農藥[11]等。Cong Hu, Man He利用金屬有機骨架(MOFs,Al-MIL-53-NH2)通過水熱合成方法和溶膠 - 凝膠技術制備新型聚二甲基硅氧烷/金屬有機骨架(PDMS / MOFs)涂覆的攪拌棒。制備攪拌棒的結果重現性良好[12]。但是,溶膠 - 凝膠過程較其他合成技術復雜。第二種方法是開發整體材料, Núria Gilart a, P.A.G. Cormack基于聚乙二醇聚甲基丙烯酸酯-共-季戊四醇三丙烯酸酯的新型極性整體材料(聚(PEGMA-co-PETRA))首先被合成[13]。其他包括乙烯基鄰苯二甲酰亞胺(VPA)和N,N'-亞甲基雙丙烯酰胺(MBAA)確定牛奶和蜂蜜中的苯并咪唑[14],或乙烯基吡咯烷酮(VPD)和二乙烯基苯(DVB)能夠有效提取環境水域的PPCPs [15]。Linna You, Man He利用一點法合成沸石咪唑酯框架整體式涂層的攪拌棒,從果實樣品中提取植物激素進行高效液相色譜 - 紫外檢測[16]。第三,分子印跡聚合技術,模板分子通常為待測物或待測物的同系物,將其先和功能單體之間以非共價鍵(或共價鍵)相互作用進行預組裝,產生高度交聯的三維網狀聚合物,然后再發生聚合反應,隨后去除印記分子留下的具有與模板的大小,形狀和化學官能團互補的空腔[17]。Yun Lei, Guanhong Xu使用多巴胺作為模板的分子印跡聚合物涂覆攪拌棒(MIP-SB)。發現 MIP-SB的吸附能力幾乎是非印跡攪拌棒的4倍。建立尿液樣品中多巴胺的分析方法,用HPLC-熒光檢測器進行MIP-SB吸附萃取。與酶聯免疫吸附試驗相比,該方法簡單,靈敏性好[18]。Zhu等人制備了MIP-SB用于測定奶粉中的三聚氰胺。將目標化合物作為模板,印跡層被化學錨定在磁性攪拌棒表面,其開始用3-(三甲氧基甲硅烷基)丙基甲基丙烯酸酯衍生化。所獲得的涂層(?4.5μm)均勻,結構緊湊,由許多互相連接的小球組成。該攪拌棒涂層與NIP相比,MIP-SB的吸附容量高3.6倍[19]。
3 ??攪拌棒的涂層材料
攪拌棒涂層可分為以下幾大類,分別為金屬有機框架,碳基材料,復合材料等[20]。一,金屬有機框架,是一類由金屬中心和有機配體經過自我組裝形成的具有可調節孔徑材料。金屬離子在骨架中起到了兩個作用:一個是作為結點提供骨架的中樞 ;另一個是在中樞中形成分支 ,從而增強了MOFs的物理性質(如多孔性和手性)[21]。肖[22]等人開發了一個基于PDMS/MIL-101-Cr-NH2的SBSE與GC-FPD耦合的新方法對東湖和池塘水樣中OPPs的測定。提出的方法得到好的富集因子(110~151)和回收89.3%~115%和80.0%~113%。金屬有機框架孔結構高度有序 ,具有比表面積大、孔隙率高、孔徑可調、化學可修飾性及結構組成、多樣性孔表面的官能團和表面勢能可控制等諸多優點。通過選擇合適的金屬離子和有機配體, 并在材料的孔內和表面進行修飾, 嫁接功能多樣化的有機官能團, 設計出與目標物親和力強、選擇性好MOFs 材料[23-25]。二,碳基材料。需要用不同基團或有機分子對其表面進行修飾。活性炭,石墨烯,碳納米材料具有較大的吸附表面積 - 體積比和高親和力,良好的物理和化學穩定性以及低成本[26] 。Talebianpoor用制成ZnS裝載在活性炭上的納米粒子涂層的攪拌棒進行預濃縮微量水平的氨基甲酸酯殺蟲劑的分析[27]。Jun Peng, Dong hao Liu將分子印跡聚合物和磁性碳納米管結合。利用兩種單體來增強選擇性分子印跡聚合物,測定環境中的水質中微量頭孢克洛和頭孢氨芐[26]。三,復合材料,復合材料是指由兩種或兩種以上不同性質的材料通過物理或化學方法組成的性能優于單一組分的材料。在一研究中,一種基于蒙脫土(MMT)摻入聚苯胺 - 聚酰胺(PANI-PA)雜化物的新型納米復合材料,通過在MMT-PA混合物中發生聚苯胺的氧化聚合反應,溶劑交換法獲得攪拌棒薄層基材[28]。YunLei,ManHe采用溶膠-凝膠法制備了一種新型聚苯胺/α-環糊精復??合涂層攪拌棒,用于分析環境水體中痕量多氯聯苯(PCBs)。該方法成功應用于長江水和東湖水中7種目標多氯聯苯的測定,河水樣本加標回收率分別為73.0%~120%,82.7%~121%[29]。
4 ?SBSE的新進展
4.1 ?新涂層材料
如今,已經將納米材料和MOFS材料結合,納米金屬-有機框架材料因具有納米尺寸,既擁有傳統塊狀MOFS的性質,也具備特殊的物理、化學特性,表現出更為優異的性能。金屬納米粒子涉及各種不同的無機納米粒子,具有比表面積大,吸附容量大,低溫改性等獨特性能。目前,金屬納米材料包括Fe3O4,TiO2,Al2O3,ZrO2,MnO和CeO2,用于功能涂層材料的改性[30, 31]。磁性納米材料提取分析物通常基于疏水性相互作用,靜電吸引和共價鍵形成。其適用于提取和富集大量的目標分析物,因為它們可以提供高比表面積,容易表面修飾和強磁性[32]。Lin等人[33]制備水穩定的Fe3O4 @ MOF-5復合材料,然后利用其磁性作為SBSE涂層粘附在Nd-Fe-B永磁體上。他們將基于MOF-5的SBSE與GC-MS聯用以檢測魚樣品中的多氯聯苯,得出結論比較滿意(94.3%~97.5%)。 在他們的另一項工作中,他們使用修飾了MOF-5捕獲適體,目的是提高魚類樣品多氯聯苯對這種SBSE涂層的選擇性,提供了大量的富集因子(50~100)[34]。Irene Aparicio , Julia Martín,等人首次利用SBSE成功提取一大批極性和非極性污染物,發現 EG-硅氧烷涂層允許同時提取兩者極性和非極性污染物。乙烯乙二醇改性硅酮的涂層材料對極性和非極性化合物中的酸性樣本萃取回收率高。該方法已成功地用于自來水和地表水樣品的應用,良好的線性范圍,準確度,獲得所有48個目標化合物[35] 。考慮到有些材料的攪拌棒制作可能復雜耗時,攪拌棒易萃取而不易解析的情況。Jackeline Stoskia,b, Natalicio F. Leite等人第一次將樹脂作為攪拌棒涂層而不需要任何附加的吸附劑相的附著,從而提供簡單的和低成本的方法,使得該材料適合于解吸分析物[36]。Inés Racamonde, 用聚二甲基硅氧烷(PDMS),聚丙烯(PP)和聚醚砜(PES)吸附劑萃取,然后用液相色譜串聯質譜(LC-MS / MS)同時測定水中17種苯并二氮類(BZPs)和相關藥物(唑吡坦)。發現PP可能成為用于提取堿性分析物的PDMS或PES的良好替代物[37]。
4.2 ?新方法
為解決大樣本的待測物,試驗人員采用多個攪拌棒的萃取方法。Li Feng,Sheng jun Zhang用攪拌棒吸附萃取法熱脫附氣相色譜檢測大量水樣中有機氯農藥,為解決長時間萃取和小樣本量問題,他們選擇多個攪拌棒萃取較大容量的水樣,同時得到良好的線性關系[38]。Xiao bing Pang, Alastair C. Lewis用PDMS攪拌棒吸附萃取技術與化學衍生氣相色譜 - 質譜聯用技術分析雨水中生物羰基化合物。從水樣中可以提取和分析29種羰基化合物,采用SBSE技術對雨水中的羰基進行了分析,20個羰基化合物的提取效率均在85%以上[39]。對于熱解析萃取吸附的檢測物時無法將攪拌棒解吸成分流/GC不分流進樣,增加了一個額外的步驟即在合適的有機溶劑中解吸提取的分析物。針對這個問Mohammad T. Jafari, Mohammad R. Rezayat論述了離子遷移譜聯用攪拌棒吸附萃取注射口的設計與構建。由黃銅合金制成的不同的熱解吸單元TDU,結果顯示注射口可用于直接分析任何吸附劑載體提取的樣品,無需進一步制備樣品[40]。同時,Madelien Wooding, Egmont R. Rohwer比較了在氣相色譜入口用專用熱解吸器或熱解吸附的一次性吸附取樣器與常規攪拌棒吸附萃取 - 熱解吸附法測定水中微量污染物,他們均用PDMS攪拌棒吸附萃取非極性化合物,得到較好的提取效率[41]。因此,在儀器分析之前,引入熱脫附單元,消除了有機溶劑中攪拌棒的重構步驟,有助于使用氣相色譜在線自動化萃取方法。
5 ?結束語
SBSE作為一種新型樣品前處理的技術。與其他的固相萃取、固相微萃取與液液萃取等方法比較,具有有機溶劑用量小、不需進一步蒸發濃縮、減少了對環境的污染、節約了大量提取時間的優點。但是由于其在商品化涂層材料種類少、價格高,一般在涂層材料對樣品中目標檢測物的選擇性差等方面存在的問題,因此,SBSE技術的發展主要集中在涂層材料。
參考文獻:
[1]Roosta M, et al. Ultrasound assisted microextraction-nano ??????????????material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design ?methodology[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 975: 34-39.
[2]Serrano M, et al.1-Butyl-3-aminopropylimidazolium-functionalized graphene oxide as a nanoadsorbent for the simultaneous extraction of steroids and beta-blockers via dispersive solid-phase microextraction[J]. J Chromatogr A, 2016,1436: 9-18.
[3]Shokoufi N B. Abbasgholi nejad asbaghi, Rotative liquid-liquid microextraction as a preconcentration method in combination with fiber optic-linear array detection spectrophotometry for the determination of cobalt in pharmaceutical samples[J]. Separation Science and Technology, 2015: 2327-2334.
[4]Nogueira J.M.F. Stir-bar sorptive extraction: 15 years making sample preparation more environment-friendly[J]. TrAC Trends in Analytical Chemistry, 2015, 71: 214-223.
[5]Prieto A., et al. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions[J]. J Chromatogr A, 2010,1217(16): ?2642-2666.
[6]Abdulrauf L.B. , G.H. Tan. Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables[J]. Chromatographia, 2013, 77(1-2): 15-24.
[7]Erik Baltussen, F.D. Pat Sandra, Automated Sorptive Extraction-Thermal Desorption-Gas Chromatography-Mass Spectrometry Analysis: Determination of Phenols in Water Samples[J]. J. Microcolumn Separations, 1998, 11(6): 471-474.
[8]Tolgyessy P., S. Nagyova M. Sladkovicova.Determination of short chain chlorinated paraffins in water by stir bar sorptive extraction-thermal desorption-gas chromato graphy-triple quadrupole tandem mass spectrometry[J]. J Chromatogr A, 2017,1494: 77-80.
[9]Samiey B., C.-H. Cheng, J. Wu. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review[J]. Materials, 2014, 7(12): 673-726.
[10]Hu Y.et. al. Sol-gel coated poly dimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its applition to analysis of estrogens and bisphenol A[J]. J Chromatogr A, 2007, 1148(1): 16-22.
[11]Yu c, B hu.sol-gel poly dimethylsiloxane/(vinylalcohol)-coated stir bar sorptive extraction of organophosphorus pesticides in honey and their determination by large volume injection GC[J]. J Sep Sci, 2009,32(1): 147-53.
[12]Hu C ,et al. sorptive extraction polydimethylsiloxane/ metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples[J]. J Chromatogr A, 2014,1356: 45-53.
[13]Gilart N, et al. New coatings for stir-bar sorptive extraction of polar emerging organic contaminants[J]. TrAC Trends in Analytical Chemistry, 2014, 54: 11-23.
[14]Huang X, et al. Preparation, characterization and application of a new stir bar sorptive extraction based on poly(vinylphthalimide-co-N,N-methylenebisacrylamide)monolith. Journal of Separation Science, 2011, 34(23): 3418-3425.
[15]Bratkowska D, et al. Development and application of a polar coating for stir bar sorptive extraction of emerging pollutants from environmental water samples[J]. Anal Chim Acta, 2011. 706(1): p. 135-142.
[16]You L., et al. One-pot synthesis of zeolitic imidazolateframework-8/poly(methylmethacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection[J]. J Chromatogr A, 2017, 1524: ?57-65.
[17]Bakas I, et al. Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil[J]. Talanta, 2014, 125: 313-318.
[18]Lei Y, et al. Preparation of a stir bar coated with molecularly imprinted polymer and its application in analysis of dopamine in urine[J]. J Pharm Biomed Anal, 2014, 94: 118-124.
[19]Zhu L, et al. Determination of melamine in powdered milk by molecularly imprinted stir bar sorptive extraction coupled with HPLC[J]. J Colloid Interface Sci, 2015, 454: 8-13.
[20]Fumes B H, et al. Recent advances and future trends in new materials for sample preparation[J]. Trends in Analytical Chemistry, 2015,71: ?19-25.
[21]Khan N.A., Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review[J]. J Hazard Mater, 2013, 244-245: 444-456.
[22]Xiao Z, et al. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the ?determination of organophosphorus pesticides in environmental water samples[J]. Talanta, 2016, 156-157: ?126-133.
[23]魏文英,方建.金屬有機骨架材料的合成及應用[J]. 化學進展, 2005, 6 (17 ): 1110-1114.
[24]穆翠枝, 徐峰. 功能金屬-有機骨架材料的應用[J]. 化學進展, 2007, 9(19): 1345-1356.
[25]劉曉玲, 范莉莉, 田莉莉. 金屬-有機配位聚合物的制備、表征及應用[J]. 當代化工, 2016, 45(6): 1299-1300.
[26]Peng J, et al. Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water[J]. Anal Bioanal Chem, 2017, 409(17): 4157-4166.
[27]Talebianpoor M.S, et al. Preconcentration of carbamate insecticides in water samples by using modified stir bar with ZnS nanoparticles loaded on activated carbon and their HPLC determination: Response surface methodology. Microchemical Journal, 2017, 130: 64-70.
[28]Ayazi Z., R. Jaafarzadeh, A.A. Matin. Montmorillonite/polyaniline/ polyamide nanocomposite as a novel stir bar coating for sorptive extraction of organophosphorous pesticides in fruit juices and vegetables applying response surface methodology. Analytical Methods, 2017, 9(31): 4547-4557.
[29]Lei Y, et al. Polyaniline/cyclodextrin composite coated stir bar sorptive extraction combined with high performance liquid chromatography -ultraviolet detection for the analysis of trace polychlorinated biphenyls in environmental waters[J]. Talanta, 2016,150: 310-318.
[30]Huang Y., Q. Zhou, J. Xiao. Establishment of trace determination method of pyrethroid pesticides with TiO2 nanotube array micro-solid phase equilibrium extraction combined with GC-ECD[J]. Analyst, 2011, 136(13): 2741-2746.
[31]Behnam R, et al. Destructive adsorption of Diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles[J]. Bull Environ Contam Toxicol, 2013,91(4): 475-480.
[32]Xu S, et al. Stimuli-responsive molecularly imprinted polymers: versatile functional materials. J Mater Chem C 1:4406-4422[J]. Journal of Materials Chemistry C, 2013,1(29).
[33]Lin S, et al. Magnetic metal-organic frameworks coated stir bar sorptive extraction coupled with GC-MS for determination of polychlorinated biphenyls in fish samples[J]. Talanta, 2015, 144: 1139-1145.
[34]Lin S, et al. Aptamer-functionalized stir bar sorptive extraction coupled with gas chromatography-mass spectrometry for selective enrichment and determination of polychlorinated biphenyls in fish samples[J]. Talanta, 2016,149: 266-274.
[35]Aparicio I, et al. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters[J]. J Chromatogr A, 2017, 1500: 43-52.
[36]Stoski J, et al. Epoxy resin as a new alternative sorbent phase for stir bar sorptive extraction for the determination of triclosan and methyl-triclosan[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2017, 52(12): 1133-1140.
[37]Racamonde I, et al. Application of polypropylene tubes as single-use and low-cost sorptive extraction materials for the determination of benzodiazepines and zolpidem in water samples[J]. Microchemical Journal, 2015, 119:58-65.
[38]Feng L, et al.Determination of trace polychlorinated biphenyls and organochlorine pesticides in water samples through large-volume stir bar sorptive extraction method with thermal desorption gas chromatography[J]. J Sep Sci, 2017, 40(23): 4583-4590.
[39]Pang X, A C Lewis, M D Shaw. Analysis of biogenic carbonyl compounds in rainwater by stir bar sorptive extraction technique with chemical derivatization and gas chromatography-mass spectrometry[J]. J Sep Sci, 2017, 40(3): 753-766.
[40]Jafari M T, M R Rezayat, M Mossaddegh. Design and construction of an injection port for coupling stir-bar sorptive extraction with ion mobility spectrometry[J]. Talanta, 2018, 178: 369-376.
[41]Wooding M, E R Rohwer, Y Naude. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water[J]. Anal Chim Acta, 2017, 984: 107-115.