響應型水凝膠在軟濕驅動器、人工肌肉、醫療器械等領域具有廣闊的應用前景。水凝膠驅動器一般由響應型水凝膠制備,具有不對稱構筑結構,在電、熱、光、pH 等刺激作用下,會發生體積或形狀變化。通過對器件結構進行精確設計,可實現簡單的抓取、釋放、行走等動作,但耗時長(一般需要數分鐘至數小時)。與工業中常見的電機驅動、液壓驅動、氣壓驅動相比,如何提高水凝膠驅動器驅動能量轉化效率、提高驅動速度,是水凝膠驅動器領域亟待解決的關鍵問題。
肌肉是典型的柔性生物驅動器,通過收縮和快速伸長而產生強大的爆發力,實現跳躍等動作。受此啟發,中國科學院寧波材料技術與工程研究所研究員付俊團隊發展了一種新策略,利用基底對凝膠形變的約束,積累彈性能,并利用界面不穩定性實現能量的爆發性釋放,驅動水凝膠實現可控跳躍。
研究人員制備了黏土交聯和增強的溫敏雙層水凝膠,通過調控材料配比,可調控各層的臨界相容溫度(LCST)。在反復升溫和降溫過程中,雙層凝膠因各層的溶脹/消溶脹性質差異而發生可逆變形、卷曲。在此過程中,因溶脹程度差異而導致凝膠內產生的彈性能得以緩慢釋放。研究發現,納米復合凝膠在多種金屬基底上具有較強的黏附性,與鑄鐵、鋁、不銹鋼、銅基板之間的黏附能可分別達到17.6、12.8、12.8、7.6 J/m2。將凝膠粘附在鋁基板上,可承受較大的拉力。在拉伸過程中,隨著凝膠發生形變,內部不斷積累彈性能;當凝膠內積累的彈性能高于界面粘附能時,凝膠瞬間滑脫,并在40 ms內回彈。
研究人員巧妙地將溫度響應行為與界面黏附特性結合,設計制作了具有棘齒結構的金屬導軌,利用凝膠與金屬之間的黏附作用,通過棘齒結構約束凝膠的形變。在升溫過程中,凝膠發生不對稱收縮,產生彎曲傾向;而導軌的棘齒結構阻礙凝膠彎曲變形,凝膠內部彈性能逐漸積累。當彈性能超越界面黏附能,凝膠瞬間脫離導軌,彈性能快速釋放,驅動凝膠跳躍。
該研究突破了傳統響應型水凝膠的驅動速度受水分子在凝膠網絡內擴散速率制約的問題,揭示了一種基于彈性能儲存和爆發性釋放實現水凝膠快速可控驅動的新策略,為高性能柔性驅動器的發展提供了全新的思路和視角。