999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

流體推力矢量技術(shù)的應(yīng)用驗(yàn)證研究進(jìn)展

2020-01-21 09:36:33瞿麗霞李巖白香君
航空科學(xué)技術(shù) 2020年5期

瞿麗霞 李巖 白香君

摘要:流體推力矢量(fluidic thrust vectoring,F(xiàn)TV)技術(shù)是利用二次流誘導(dǎo)主流偏轉(zhuǎn)、實(shí)現(xiàn)推力轉(zhuǎn)向的新型流動(dòng)控制技術(shù)。概述了FTV技術(shù)的空氣動(dòng)力學(xué)原理,詳細(xì)綜述了FTV技術(shù)的應(yīng)用驗(yàn)證研究進(jìn)展,對(duì)FTV技術(shù)未來發(fā)展提出了幾點(diǎn)建議:開展FTV噴管幾何參數(shù)的精細(xì)化設(shè)計(jì)以實(shí)現(xiàn)高效可靠的推力矢量控制;通過不同層次的系統(tǒng)集成驗(yàn)證加速推動(dòng)FTV技術(shù)的工程應(yīng)用;探索環(huán)量控制機(jī)翼(circulation control wing,CCW)和FTV協(xié)同控制完全替代活動(dòng)舵面的最優(yōu)方案。

關(guān)鍵詞:流動(dòng)控制;Coanda效應(yīng);流體推力矢量;二次流

中圖分類號(hào):V211.4文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19452/j.issn1007-5453.2020.05.009

推力矢量控制(thrust vectoring control,TVC)技術(shù)是指推進(jìn)系統(tǒng)既能為飛行器提供前飛推力,還能使發(fā)動(dòng)機(jī)推力轉(zhuǎn)向,同時(shí)或單獨(dú)產(chǎn)生俯仰、偏航、滾轉(zhuǎn)的控制力及力矩,可以直接對(duì)飛行器姿態(tài)進(jìn)行控制或者取代部分舵面的控制功能,實(shí)現(xiàn)原有飛行器無法做到的機(jī)動(dòng)或大迎角飛行。TVC通常被分為機(jī)械式和流體式兩類[1-2]。公開資料顯示,已應(yīng)用機(jī)械式推力矢量技術(shù)并裝備形成戰(zhàn)斗力的軍機(jī)有美國(guó)的F-22和俄羅斯的蘇-35。但由于結(jié)構(gòu)重量(質(zhì)量)大、活動(dòng)部件多、偏轉(zhuǎn)機(jī)構(gòu)復(fù)雜、主噴流偏轉(zhuǎn)響應(yīng)慢、推力損失大等固有缺陷,一定程度上阻礙了機(jī)械式推力矢量技術(shù)在飛機(jī)上的應(yīng)用[3]。流體推力矢量(FTV)技術(shù)屬于主動(dòng)流動(dòng)控制技術(shù)范疇,一般是通過在結(jié)構(gòu)固定的噴管上用射流或引氣的方式調(diào)控主流流量和方向,從而產(chǎn)生推力矢量[4]。無運(yùn)動(dòng)部件的結(jié)構(gòu)特點(diǎn),使得FTV不但規(guī)避了機(jī)械式TVC的固有缺陷,同時(shí)在隱身、減重、機(jī)動(dòng)等方面比機(jī)械式TVC優(yōu)勢(shì)顯著。理想狀況下,F(xiàn)TV可為高機(jī)動(dòng)飛機(jī)提供足夠的俯仰控制力矩,也可為無尾/飛翼布局飛機(jī)提供三軸穩(wěn)定性控制力矩[2]。

1 FTV技術(shù)的空氣動(dòng)力學(xué)原理

從空氣動(dòng)力學(xué)角度來講,F(xiàn)TV技術(shù)可以分為激波控制和科恩達(dá)(Coanda)控制兩類。其中,激波控制類包括激波矢量、喉道偏置和雙喉道矢量等,控制原理類似,即在噴管不同位置注射二次流產(chǎn)生斜激波來改變主流方向,進(jìn)而實(shí)現(xiàn)推力矢量化,如圖1所示。激波控制的矢量控制規(guī)律曲線線性度較好,但是由于主噴流需要穿過激波使推力損失大、總矢量偏角小,導(dǎo)致能耗高效率低。Coanda控制包括逆向流、同向流以及無源二次流等,其控制原理均以Coanda壁面為主要構(gòu)型,借助Coanda效應(yīng)同時(shí)利用二次流與發(fā)動(dòng)機(jī)主噴流剪切層的相互作用實(shí)現(xiàn)矢量控制,如圖2所示。Coanda控制與激波控制相比,能夠獲得相對(duì)較大的矢量角和較高的控制效率[5-8]。表1列出了幾種常見的激波控制和Coanda控制的FTV技術(shù)性能對(duì)比,可以看出,Coanda控制的推力矢量控制效率和推力系數(shù)總體上高于激波控制。但是Coanda控制在某些情況下存在推力矢量偏轉(zhuǎn)規(guī)律曲線非線性、遲滯和突跳等問題。隨著人們對(duì)Coanda效應(yīng)FTV技術(shù)的探索,這些問題已有初步解決方案。本文主要討論基于Coanda效應(yīng)的FTV技術(shù)應(yīng)用驗(yàn)證研究進(jìn)展。

2 FTV技術(shù)的應(yīng)用驗(yàn)證

參考文獻(xiàn)[1]、參考文獻(xiàn)[2]、參考文獻(xiàn)[5]~參考文獻(xiàn)[8]對(duì)FTV技術(shù)的工作機(jī)理機(jī)制、數(shù)值模擬方法、試驗(yàn)技術(shù)等進(jìn)行了詳細(xì)的綜述。美國(guó)Rohr公司聯(lián)合美國(guó)航空航天局(NASA)蘭利研究中心于1993年首次提出基于Coanda壁面的吹氣控制方法,這是同向流控制的雛形。隨后,國(guó)外多位學(xué)者[10-20]對(duì)同向流FTV技術(shù)開展了深入、系統(tǒng)的研究。北約從20世紀(jì)70年代開始實(shí)施“創(chuàng)新控制效應(yīng)器”(Innovative Control Effectors)項(xiàng)目,開發(fā)主動(dòng)流動(dòng)控制(AFC)技術(shù),并于2013年聯(lián)合多家機(jī)構(gòu)成立了AVT-239任務(wù)組(NATO AVT-239),針對(duì)流動(dòng)控制技術(shù)應(yīng)用于未來無人機(jī)系統(tǒng)開展5年性能評(píng)估[21]。北約、英國(guó)BAE系統(tǒng)公司雖已將流體飛行控制技術(shù)推進(jìn)到裝機(jī)試飛階段,如2010年9月試飛的DEMON無人機(jī)和2019年5月首飛的MAGMA無人機(jī),但實(shí)際裝備流體矢量噴管進(jìn)行飛行控制的飛機(jī)較少。據(jù)猜測(cè),美國(guó)的X-36、X-45可能使用了流體矢量噴管控制偏航,以取代垂尾。國(guó)內(nèi)近年來比較有代表性的是南京航空航天大學(xué)FTV研究團(tuán)隊(duì)[6-8,22,23],針對(duì)小雷諾數(shù)、小尺寸驗(yàn)證機(jī)(如“暗流”“馭風(fēng)”)開展了較為系統(tǒng)的研究,但在大雷諾數(shù)、大尺寸驗(yàn)證機(jī)上的適用性有待進(jìn)一步研究。鑒于上述流動(dòng)控制技術(shù)的前傳擾動(dòng)機(jī)理,目前已有的相關(guān)應(yīng)用驗(yàn)證研究均集中在亞聲速范圍內(nèi)開展。

2.1基于Coanda效應(yīng)的同向流FTV技術(shù)

DEMON無人機(jī)的兩次飛行測(cè)試展示了FLAVIIR(Flapless Air Vehicle Integrated Industrial Research)項(xiàng)目集成的CC滾轉(zhuǎn)控制、先進(jìn)飛行控制等諸多技術(shù),尚未對(duì)FTV系統(tǒng)進(jìn)行飛行測(cè)試,但該系統(tǒng)已在曼徹斯特大學(xué)風(fēng)洞中成功展示[24]。DEMON的飛行速度范圍為38~60m/s。為了在DEMON上實(shí)現(xiàn)完全流動(dòng)控制飛行,犧牲了項(xiàng)目指標(biāo)中機(jī)動(dòng)性、速度、載重等關(guān)鍵指標(biāo),整機(jī)重量(質(zhì)量)也從計(jì)劃的50kg增加到90kg[24-26]。DEMON的流體飛行控制系統(tǒng)由CCW和FTV噴管兩部分組成[27](見圖3)。CCW是基于Coanda效應(yīng)改變空氣沿機(jī)翼表面的流動(dòng)方向,從而產(chǎn)生相應(yīng)的控制力矩來實(shí)現(xiàn)滾轉(zhuǎn)控制,通過控制邊界層流動(dòng),該系統(tǒng)還可以在飛行器起飛和降落階段提供更大的升力;FTV噴管利用發(fā)動(dòng)機(jī)推力矢量化來進(jìn)行控制,通過二次流引導(dǎo)主流從安裝在矩形排氣噴嘴中的Coanda表面流出以控制飛行姿態(tài)。

3發(fā)展建議

經(jīng)過近年來的持續(xù)探索,國(guó)內(nèi)外研究人員在FTV領(lǐng)域已經(jīng)積累了非常豐富的研究經(jīng)驗(yàn),國(guó)外科研機(jī)構(gòu)已開展了若干次飛行試驗(yàn)驗(yàn)證,推動(dòng)了FTV技術(shù)成熟度的顯著提升。通過上述針對(duì)FTV技術(shù)進(jìn)行應(yīng)用驗(yàn)證研究的技術(shù)細(xì)節(jié)分析,對(duì)今后FTV技術(shù)研究提出如下的發(fā)展建議,為FTV技術(shù)如何進(jìn)入工程化應(yīng)用提供一定的參考。

(1)FTV的技術(shù)難點(diǎn)之一在于,引入的二次流很難對(duì)發(fā)動(dòng)機(jī)噴流進(jìn)行精準(zhǔn)控制,實(shí)施不當(dāng)有可能使主噴流偏轉(zhuǎn)不夠降低控制效率,或者過偏轉(zhuǎn)失控,以及出現(xiàn)雙穩(wěn)態(tài)、遲滯、非線性現(xiàn)象。對(duì)比BAE系統(tǒng)公司研發(fā)的兩代驗(yàn)證機(jī)DEMON和MAGMA在FTV系統(tǒng)關(guān)鍵結(jié)構(gòu)特征的演變,F(xiàn)TV噴管形狀、尺寸等核心幾何參數(shù)是獲得可靠性能的關(guān)鍵。因此未來的重點(diǎn)工作應(yīng)對(duì)噴管結(jié)構(gòu)進(jìn)行精細(xì)化設(shè)計(jì),通過精準(zhǔn)的幾何形狀控制來調(diào)節(jié)二次流以及主流的流動(dòng)性能,以保證獲得高控制效率的同時(shí)具有良好的控制響應(yīng)特性。

(2)FTV技術(shù)工程應(yīng)用需要更多的系統(tǒng)集成性驗(yàn)證,由于涉及各項(xiàng)系統(tǒng)的匹配與銜接問題,在孤立的FTV設(shè)備上無法發(fā)現(xiàn)的問題,只有在不同層次的系統(tǒng)集成驗(yàn)證中才能發(fā)現(xiàn)并解決。例如,通過系統(tǒng)集成進(jìn)一步研究和掌握FTV技術(shù)的時(shí)變性能。一方面是發(fā)動(dòng)機(jī)對(duì)矢量系統(tǒng)瞬態(tài)操作的閉環(huán)響應(yīng),即快速/間歇性需求對(duì)發(fā)動(dòng)機(jī)性能的影響;二是外部流對(duì)由流體推力矢量系統(tǒng)引起的局部變化響應(yīng)時(shí)間,了解控制閥操作與飛機(jī)負(fù)載之間的關(guān)系,以探索飛行器對(duì)干擾抑制的響應(yīng)。利用二次流進(jìn)行飛行控制,若需要從發(fā)動(dòng)機(jī)引氣,就會(huì)降低發(fā)動(dòng)機(jī)性能。需要在概念設(shè)計(jì)階段考慮飛發(fā)一體化設(shè)計(jì),綜合評(píng)估發(fā)動(dòng)機(jī)性能下降和獲得控制收益的關(guān)系,研究如何利用最少的二次流實(shí)現(xiàn)預(yù)定的偏轉(zhuǎn)控制。試飛驗(yàn)證方面,有限的試飛中,只是在低速平飛狀態(tài)下對(duì)流體飛行控制系統(tǒng)進(jìn)行了演示,起降、機(jī)動(dòng)等其他復(fù)雜飛行條件尚未有報(bào)道,并未驗(yàn)證低速大迎角飛行時(shí)的控制特性,高馬赫數(shù)飛行的試飛驗(yàn)證仍然具有極大的挑戰(zhàn)。

(3)能否采用流動(dòng)控制技術(shù)在亞聲速范圍內(nèi)替代活動(dòng)操縱面,以徹底解決活動(dòng)舵面帶來的隱身、維護(hù)、重量等問題,是未來飛行器設(shè)計(jì)的研究熱點(diǎn)之一。已有研究表明,F(xiàn)TV技術(shù)在進(jìn)行縱向俯仰控制時(shí)效率較高,也可用于無尾布局的航向控制,但是尚不能完全替代全部舵面以實(shí)現(xiàn)飛機(jī)六自由度操控。目前可行的方案是將CCW與FTV配合使用,CCW主要用于橫向操控和提供起降升力,F(xiàn)TV俯仰控制力矩較大,可彌補(bǔ)CCW縱向力矩小的不足。在DEMON和MAGMA兩架驗(yàn)證機(jī)上均采用了CCW和FTV協(xié)同控制,NATO AVT-239任務(wù)組對(duì)各類流動(dòng)控制技術(shù)進(jìn)行綜合評(píng)估時(shí),認(rèn)為ICE和SACCON的流體飛行控制最優(yōu)方案是CCW和FTV兩項(xiàng)技術(shù)的組合使用。未來的研究工作可以延續(xù)這個(gè)思路,繼續(xù)探索CCW和FTV的最優(yōu)協(xié)同控制方案。此外,流動(dòng)控制技術(shù)在超聲速領(lǐng)域的應(yīng)用,還需要探索其他其他解決方案。

參考文獻(xiàn)

[1]Deere K A. Summary of fluidic thrust vectoring research conducted at NASA langley research center[R]. AIAA-2003-3800,Orlando,F(xiàn)lorida:2003.

[2]肖中云,江雄,牟斌,等.流體推力矢量技術(shù)研究綜述[J].實(shí)驗(yàn)流體力學(xué),2017,31(4):8-15. Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Advances in fluidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017,31(4):8-15. (in Chinese)

[3]賈東兵.關(guān)于推力矢量控制技術(shù)的探討[J].航空動(dòng)力,2018(3): 25-27. Jia Dongbing. Discussion on thrust vector control technologies[J]. Aerospace Power, 2018(3):25-27. (in Chinese)

[4]徐悅,杜海,李巖,等.基于射流飛控技術(shù)的無操縱面飛行器研究進(jìn)展[J].航空科學(xué)技術(shù),2019,30(4):1-7. Xu Yue, Du hai, Li Yan, et al. Progress research of fluidic flight control technology for flapless aircraft[J]. Aeronautical Science& Technology, 2019,30(4):1-7. (in Chinese)

[5]韓杰星.流體矢量噴管內(nèi)外流耦合研究[D].南京:南京航空航天大學(xué),2018. Han Jiexing. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics andAstronautics, 2018. (in Chinese)

[6]溫俊杰.無源受控?cái)_動(dòng)下Coanda附壁射流離壁過程研究[D].南京:南京航空航天大學(xué),2019. Wen Junjie. Study on the transient separation process of Coanda wall-attached jet under passive controlled excitation[D].Nanjing:NanjingUniversityofAeronauticsand Astronautics, 2019. (in Chinese)

[7]趙雄.基于無源流體推力矢量噴管的飛行器控制技術(shù)試驗(yàn)研究[D].南京:南京航空航天大學(xué),2018. Zhao Xiong. Experimental research on vehicle control technology based on passive fluidic thrust vectoring nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)

[8]林泳辰.新型流體矢量噴管的應(yīng)用研究[D].南京:南京航空航天大學(xué),2019. Lin Yongchen. An application research on the new fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics andAstronautics, 2019. (in Chinese)

[9]Warsop C,Crowther W J. Fluidic flow control effectors for flight control [J].AIAAJournal,2018,56(10):3808-3824.

[10]Warsop C,F(xiàn)orster M,Crowther W J. Supercritical Coanda based circulation control and fluidic thrust vectoring [R]. AIAASciTech Forum. San Diego,CA:2019.

[11]Mason M,Crowther W J. Fluidic thrust vectoring of low observable aircraft [C]// CEAS Aerospace Research Conference,Cambridge,2002.

[12]Pilmoor M. Pitch control of a low observable UAV using fluidic thrust vectoring [D]. Manchester:Manchester University,2009.

[13]Gill K J. The development of coflow fluidic thrust vectoring systems [D]. Manchester:Manchester University,2009.

[14]Lytton A. Large-scale application of fluidic thrust vectoring[D]. Manchester:Manchester University,2005.

[15]Chippindall J. Geometric optimisation of nozzles for supersonic fluidic thrust vectoring [D]. Manchester:Manchester University,2010.

[16]Ashley J. Aft deck supersonic thrust vectoring [D]. Manchester:Manchester University,2011.

[17]Jegede O. Dual-axis fluidic thrust vectoring of high aspectratio supersonic jets [D]. Manchester:Manchester University,2016.

[18]Afilaka O. Normal blowing fluidic thrust vectoring for supercritical aft-deck convergent-divergent nozzles [D]. Manchester:Manchester University,2017.

[19]Song M J,Chang H B,Park S H,et al. Application of backstep coanda flap for the supersonic co-flowing fluidic thrust vector control [R]. San Jose,CA:AIAA-2013,2013.

[20]Clandra S T,Kushari A,Mody B,et al. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck[J]. Experimental Thermal and Fluid Science,2017,86:189-203.

[21]蔡琰.國(guó)外射流飛行控制技術(shù)發(fā)展及前景分析[J].航空科學(xué)技術(shù),2020,31(1):85-86. Cai Yan. Development and prospect analysis of foreign fluidic flightcontroltechnology[J].AeronauticalScience& Technology, 2020, 31(1): 85-86. (in Chinese)

[22]曹永飛,顧蘊(yùn)松,韓杰星.流體推力矢量技術(shù)驗(yàn)證機(jī)研制及飛行試驗(yàn)研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2019,37(4):593-599. Cao Yongfei, Gu Yunsong, Han Jiexing. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamics Sinica, 2019,37(4):593-599. (in Chinese)

[23]龔東升,顧蘊(yùn)松,周宇航,等.基于微型渦噴發(fā)動(dòng)機(jī)熱噴流的無源流體推力矢量噴管的控制規(guī)律研究[EB/OL].航空學(xué)報(bào), http://kns.cnki.net/kcms/11.1929.v.20191221.1554.004.html. Gong Dongsheng, Gu Yunsong, Zhou Yuhang, et al. Research on control law of passive fluid thrust vector nozzle based on the thermal jet of micro turbojet engine[EB/OL]. Acta Aeronautica et Astronautica Sinica, http://kns.cnki.net/kcms/11. 1929.v.20191221.1554.004.html. (in Chinese)

[24]Fielding J P,Mills A,Smith H. Design,build and flight of the Demon demonstrator UAV[C]//11th AIAA Aviation Technology,Integration,and Operations(ATIO)Conference,Virginia Beach,VA,2011.

[25]Fielding J P,Lawson C P,Pires R,et al. Development of the Demon Technology Demonstrator UAV [C]//ICAS 2010,27th International Congress of the Aeronautical Sciences. Nice,F(xiàn)rance,2010.

[26]Savvaris A,Buonanno A,Tsourdos A. Design and development of the DEMON UAV fluidic flight control system [C]// Guidance,Navigation,and Control and Co-located Conferences,Boston,MA,2013.

[27]Crowther W J,Wilde P I A,Gill K,et al. Towards integrated design of fluidic flight controls for a flapless aircraft[J]. Aeronautical Journal,2009,113(1149):699-713.

[28]Wilde P,Buonanno A,Crowther B,et al. Aircraft control using fluidic maneuver effectors [C]// 26th AIAAApplied Aerodynamics Conference,Honolulu,Hawaii,2008.

[29]Sobester A,Keane A. Multi-objective optimal design of a fluidic thrust vectoring nozzle [C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimisation Conference,Portsmouth,Virginia,USA,2006.

[30]Burley J R. Circular to rectangular transition ducts for high aspect ratio non-axisymmetric nozzles [C]// SAE,ASME & ASEE Joint Propulsion Conference,1985.

[31]Gill K G,Wilde P I A,Crowther W J. Development of an Integrated propulsion and pneumatic power supply system for flapless UAVs [C]// 7th AIAA Aviation Technology,Integration and Operations Conference(ATIO),2007.

[32]Warsop C,Crowther W J,Shearwood T. NATO AVT-239 task group:flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft [C]// AIAA SciTech Conference,2019.

[33]Hutchin C. NATO AVT-239 task group:control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration[C]//AIAA SciTech Forum,2019.

[34]Miller D N,Williams D,Warsop C,et al. NATO AVT-239 task group:approach to assess prospects of active flow control on a next-gen tailless aircraft [C]// AIAA SciTech Conference,2019.

[35]Niestroy M A,Williams D R,Seidel J. NATO AVT-239 Task group:flow control simulation of the tailless ICE aircraft [C]// AIAASciTech Forum. San Diego,CA,2019.

[36]Maines B H,Miller D N. NATO AVT-239 task group:flow control system integration into the tailless ICE aircraft[C]// AIAASciTech Conference,2019.

[37]Phillips E,Jentzsch M,Menge M,et al. NATO AVT-239 task group:on the use of active flow control to change the spanwise flow on tailless aircraft models,thus affecting their trim and control [C]// AIAA SciTech Forum. San Diego,CA,2019.

[38]Warsop C,Smith D R,Miller D N. NATO AVT-239:innovative control effectors for manoeuvring of air vehicles-conclusions and next steps[C]//AIAASciTech Conference,2019.

[39]Niestroy M A,Dorsett K M,Markstein K. A tailless fighter aircraft model for control-related research and development[C]//AIAASciTech Conference,2017.

[40]Williams D,Osteroos R,McLaughlin T. NATO AVT-239 task group:flight control derivatives using active flow control effectors on the ICE/SACCON UCAS model [C]// AIAA SciTech Conference,2019.

[41]Miller D N,Maines B H,Niestroy M A. NATO AVT-239 task group:results to assess prospects of active flow control on a next-gen tailless aircraft [C]// AIAA SciTech Forum. San Diego,CA,2019.

(責(zé)任編輯陳東曉)

作者簡(jiǎn)介

瞿麗霞(1986-)女,博士,高級(jí)工程師。主要研究方向:計(jì)算流體力學(xué)、空氣動(dòng)力學(xué)、航空數(shù)值模擬技術(shù)。

Tel:010-84933672

E-mail:qulixia2005@163.com

Application Verification Research Progress on Fluid Thrust Vectoring Technology

Qu Lixia*,Li Yan,Bai Xiangjun

Chinese Aeronautical Establishment,Beijing 100012,China

Abstract: Fluid Thrust Vectoring (FTV) technology is a new flow control technology that uses secondary flow to induce mainstream deflection and achieve thrust steering. The aerodynamic principles of FTV technology are summarized. The application verification research progress on FTV technology is reviewed in detail. Some suggestions for the future development of FTV technology are proposed: conduct refined design of FTV nozzle geometric parameters to achieve efficient and reliable thrust vector control; accelerate the engineering application of FTV technology through different levels of system integration verification; explore the optimal solution of circulation control wing (CCW) and FTV collaborative control to completely replace the active rudder surface.

Key Words: flow control; Coanda effect; fluidic thrust vectoring; secondary flow

主站蜘蛛池模板: 美女一区二区在线观看| 免费xxxxx在线观看网站| 福利国产微拍广场一区视频在线| 国产女人综合久久精品视| 日韩高清欧美| 青青青国产精品国产精品美女| 久久人体视频| 波多野结衣无码视频在线观看| 青青青草国产| 999在线免费视频| 亚洲av无码久久无遮挡| 国产av剧情无码精品色午夜| 日本在线亚洲| 免费人成视网站在线不卡| 91在线中文| 在线欧美日韩国产| 久久精品日日躁夜夜躁欧美| 国产肉感大码AV无码| 午夜福利网址| 亚洲美女久久| 国产不卡一级毛片视频| 日韩欧美国产中文| 在线观看欧美国产| 女人毛片a级大学毛片免费 | 亚洲精品桃花岛av在线| 国产成人91精品免费网址在线| h视频在线播放| 青草免费在线观看| 亚洲第七页| 亚洲Av激情网五月天| 无码国内精品人妻少妇蜜桃视频| 国产真实乱子伦精品视手机观看| 国产成人精品综合| 在线国产欧美| 尤物视频一区| 色亚洲成人| 成人在线天堂| 91精品国产一区| 国产精品青青| 青青草原偷拍视频| 免费毛片全部不收费的| 天天色综网| 亚洲无码91视频| 中文字幕在线看视频一区二区三区| 欧美色视频日本| 亚洲日韩国产精品无码专区| 伊人无码视屏| 无码乱人伦一区二区亚洲一| 欧美成人影院亚洲综合图| 国产麻豆va精品视频| 强奷白丝美女在线观看| 日本手机在线视频| 免费观看亚洲人成网站| 成人福利在线免费观看| 曰韩免费无码AV一区二区| 成人午夜网址| 国产69精品久久久久孕妇大杂乱 | 国产乱人伦精品一区二区| 青草视频免费在线观看| 亚洲人成网站18禁动漫无码| 丰满少妇αⅴ无码区| 韩日免费小视频| 国产高清在线精品一区二区三区| 国产成人精品一区二区| 国产精品视频系列专区| 成人在线天堂| 欧美三级视频网站| 欧美国产在线看| 成人国产精品网站在线看 | 性喷潮久久久久久久久| 日本草草视频在线观看| 第一页亚洲| 亚洲国产av无码综合原创国产| 国产91精选在线观看| 亚洲国产成人麻豆精品| 美女扒开下面流白浆在线试听 | 亚洲精品va| 国内精品小视频在线| 午夜精品久久久久久久99热下载| 免费观看亚洲人成网站| 国产高清自拍视频| 麻豆国产精品视频|