隋國慶 張培新 楊國柱



摘 ?要: 本研究基于心臟活體冠脈 CTA 原始影像數據,采用醫學影像交互式控制系統軟件的最新冠狀動脈分割算法,重構冠狀動脈的個體化血管模型,應用計算流體力學技術對冠狀動脈前降支及其分支進行血流動力學數值模擬分析。探討了斑塊對血流動力學參數的影響,進而研究了冠狀動脈粥樣硬化的形成、冠狀動脈狹窄或梗死的發生和發展的特點與機制。該研究為臨床的研究與治療提供理論依據,同時可用于指導冠狀動脈狹窄及梗死患者支架介入治療的術前設計。
關鍵詞: 冠狀動脈;血流動力學;數值模擬;支架介入
中圖分類號: TP319 ? ?文獻標識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2020.01.023
本文著錄格式:隋國慶,張培新,楊國柱,等. 冠狀動脈的數值模擬分析及在支架介入的應用研究[J]. 軟件,2020,41(01):110113
【Abstract】: Based on the original CTA image data of living coronary arteries, this study used the latest coronary artery segmentation algorithm of medical image interactive control system software to reconstruct the individualized coronary artery model, and applied computational fluid dynamics technology to conduct hemodynamic numerical simulation analysis of the anterior descending coronary artery and its branches. The effect of plaque on hemodynamic parameters was discussed, and the formation of coronary atherosclerosis, the occurrence and development of coronary artery stenosis or infarction were studied. This study provides a theoretical basis for clinical research and treatment, and can be used to guide the preoperative design of stent intervention in coronary artery stenosis and infarction.
【Key words】: Carotid artery; Numerical simulation; Haemodynamics; Stent intervention
0 ?引言
動脈粥樣硬化(atherosclerosis,AS)是以大、中動脈內膜粥樣硬化損傷為特征的血管病變,是心血管疾病發病的基本病因之一[1]。其形成主要與遺傳基因、高血壓、高脂血癥、糖尿病、吸煙及精神壓力等相關[2]。不同動脈 AS 的發生率有很大差異,AS 主要生成于大動脈及動脈分支處,其部位有明顯的血流變化[3]。斑塊形成在解剖學上有明顯傾向性,與某種有選擇定位作用的致病因素相關聯。異常血液流動致動脈應力改變在AS形成過程中起著重要作用[4-5]。由于目前醫學技術的局限性,無論是間接或者直接方式在人體冠狀動脈測量血流動力學參數都存在很大的困難[4-5]。因此,基于醫學影像技術,通過計算機技術建立人體冠狀動脈的三維模型,對其進行血流動力學仿真分析,有重要的臨床價值。借助目前廣泛應用的三維重建技術,把患者身體上的特定部位,通過CT或核磁共振技術采集的各種數據經過軟件的計算,呈現出被掃描部位的三維影像,可以更方便的觀察我們感興趣的區域[6]。
多數臨床醫學影像醫生對冠狀動脈的狹窄或梗死的診斷與介入治療是以對CTA平掃圖像的閱讀為依據的[7]。然而平掃圖很難提供準確的血管狹窄位置及物理特征與參數,更不能提供血流動力學參數及血管壁的力學參數,因此,很難準確的選擇與之匹配的球囊支架的型號與彈性特征。本課題研究。本研究不僅可以探索冠狀動脈狹窄或梗死形成和發展的血流動力學機制,而且可以提供冠狀動脈狹窄或梗死血流動力學各項參數的檢測和分析方法。本課題通過對冠狀動脈狹窄或梗死的仿真模型設計,可對狹窄或梗死進行精確定位與形態評估,為合理選擇適當長度、直徑及彈性的支架,將球囊支架釋放到合理的位置提供介入術前指導。
本研究基于真實患者的冠狀動脈CTA影像,采用醫學影像交互式控制系統軟件(MIMICS 21.0,比利時MATERIALISE公司)的最新冠狀動脈分割算法,重構冠狀動脈的個體化血管模型,應用計算流體力學技術對冠狀動脈前降支及其分支進行血流動力學數值模擬分析,探討斑塊對血流動力學參數的影響,進而探討冠狀動脈粥樣硬化的形成、冠狀動脈狹窄或梗死的發生和發展的特點發展的機制,為臨床的研究、治療提供理論依據,從而可以有效地指導冠狀動脈狹窄及梗死患者支架介入療法的術前設計。
1 ?材料與方法
1.1 ?實驗數據采集及實驗設備
CTA影像數據:采集牡丹江醫學院附屬紅旗醫院患者冠狀動脈CTA影像DICOM格式(醫學圖像存儲與通訊的標準格式)數據2例(左冠狀動脈健康、狹窄各1例),本研究感興趣區域(Region of Interest)如圖1所示。
[3] Paliwal, N, et al. Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc SPIE Int Soc Opt Eng, 2017; 1(2): 13-15.
[4] Goldstein S. Modern developments in fluid mechanics. New York: Dover Publication[M]. 1965, 310.
[5] Z. Sun, F. J. Dimpudus, J. N ugroho, et al. C T virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study [J].European Journal of Radiology, 2010, 75(1), 112: 119.
[6] Glannoglou GD, Antoniadis AP, Koskinas KC, et al. Flow and atherosclerosis in coronary bifurcations[J]. Euro Intervention Supplement Journal, 2010, 16: 23.
[7] Finet G, Huo Y, Rioufol G, et al. Structure- function relation in the coronary artery tree: from fluid dynamics to arterial bifurcations[J]. Euro Intervention Supplement Journal 2010, 10: 5.
[8] Thanapong Chaichana, Zhonghua Sun, James Jewkes, et al. Computational Fluid Dynamics Analysis of the Effect of Plaques in the Left Coronary Artery[J]. Comput Math Methods Med, 2012, 5(1): 43-67.
[9] Liang Zhong, Jun-Mei Zhang, Boyang Su, et al. Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities[J]. Front Physiol, 2018, 9: 742.
[10] Claudio Chiastra, Susanna Migliori, Francesco Burzotta, et al. Patient-Specific Modeling of Stented Coronary Arteries Reconstructed from Optical Coherence Tomography: Towards a Widespread Clinical Use of Fluid Dynamics Analyses[J]. J Cardiovasc Transl Res, 2018, 11(2): 156-172.
[11] Amrut V. Ambardekar, Mary C.M. Weiser-Evans, et al. Coronary Artery Remodeling and Fibrosis with Continuous-Flow Left Ventricular Assist Device Support[J]. Circ Heart Fail, 2018, 11(5): 12-15.
[12] S. Li, Cheng Chin, Vikas Thondapu, Eric K.W, et al. Numerical and experimental investigations of the flow–pressure relation in multiple sequential stenoses coronary artery[J]. Int J Cardiovasc Imaging, 2017, 33(7): 1083-1088.
[13] R. Agujetas, M. R. González-Fernández, J. M. Nogales-Asensio, et al. Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve[J]. Biomed Eng Online, 2018, 17: 67.
[14] Madhurima Vardhan, John Gounley, S. James Chen, et al. The importance of side branches in modeling 3D hemodynamics from angiograms for patients with coronary artery disease[J]. Sci Rep, 2019, 9: 8854.
[15] Yang Yang, Xin Liu, Yufa Xia, et al. Impact of spatial characteristics in the left stenotic coronary artery on the hemodynamics and visualization of 3D replica models[J]. Sci Rep, 2017, 7: 15452.