李 洪,王美芳,張 曼
光伏-環路熱管/熱泵熱水系統在不同氣候區性能對比與優化
李 洪,王美芳,張 曼
(燕山大學建筑工程與力學學院,秦皇島 066004)
為改善傳統太陽能光伏/光熱熱水系統運行性能,拓展空氣源熱泵熱水系統應用范圍,該文針對一種太陽能光伏-環路熱管/熱泵熱水系統開展了其在3種不同氣候區運行性能對比及優化研究。分別選擇北京、上海和廣州作為寒冷、夏熱冬冷和夏熱冬暖地區典型氣候代表城市,依據所建數學模型,模擬比對系統在3個地區的全年運行性能,分析了集熱/蒸發器的朝向與安裝傾角對系統運行性能的影響,并對其進行了優化;以傳統空氣源熱泵熱水系統為基準,采用全壽命周期成本計算方法分析了系統的經濟可行性。結果表明,相同安裝傾角正南朝向時,系統在廣州的太陽能綜合利用效率最高、節能性最佳;各地區理想安裝傾角下,北京和上海正南朝向時系統節能效益最優,廣州則南偏東30°時節能率最高;與傳統空氣源熱泵熱水系統相比,系統在北京、上海、廣州的全壽命周期成本分別降低了58.75%、49.83%及53.09%,經濟效益顯著。
太陽能;熱泵;效率;氣候條件;運行性能
傳統化石能源的應用促進了經濟的增長和生產力水平的提高,但同時導致能源危機以及環境污染問題日益嚴重[1-2]。因此,太陽能作為一種可持續清潔能源,受到越來越廣泛地推廣應用。太陽能光伏光熱(photovoltaic and thermal,PV/T)技術一直是太陽能研究領域中備受關注的方向之一,以其良好的節能性、環境友好性等優勢引起眾多學者的研究興趣[3-4]。目前所涉及的研究內容主要包括設計更加高效的系統形式[5-6]、研究分析系統的經濟性與可行性等[7];研究方法包含數值模擬[8-10]、搭建試驗臺進行試驗研究等[11-13]。通過學者們的不斷探索和研究,太陽能PV/T技術日臻完善。
環路熱管(loop heat pipe,LHP)是一種高效的兩相傳熱設備,具有優良的傳熱性能與結構特性,能夠在小溫差、長距離的情況下傳遞大量熱量,同時具有良好防凍性能,基于以上特性,部分學者提出將PV/T技術與LHP相結合的供熱系統[14-16]。研究表明,該類系統能夠提升太陽能光熱效率與光電效率,具有良好的光電光熱綜合利用性能[17-20]。此外,Zhang等[21-22]將PV/T集熱/蒸發器、環路熱管以及熱泵技術相結合,通過環路熱管與熱泵循環串聯連接的方式進一步提升太陽能光熱轉換效率。張龍燦等[23]及Li等[24-25]則通過環路熱管與熱泵環路并聯的方式,實現多模式相互切換的太陽能環路熱管熱泵熱水系統,以更高效地滿足建筑生活用水需求。本課題組所提系統將太陽能PV/T技術與環路熱管及太陽能/空氣源熱泵相結合,不僅繼承了太陽能熱泵的優點,同時解決了熱泵運行所需部分電力,減少了能量的輸送環節,提高了太陽能綜合利用效率及其節能效益[25]。相關研究表明,太陽能PV/T系統及其與熱泵相結合的復合系統運行性能受氣候條件、設計參數及安裝位置等因素影響顯著[26-30]。因此,在前期研究的基礎上,本課題組將針對文獻[25]中所研究系統,進一步分析比對其在不同氣候區的運行性能及變化規律,同時研究分析太陽能PV/T集熱/蒸發器的安裝傾角和朝向對系統運行性能及其經濟性的影響。
光伏-環路熱管/熱泵熱水系統(圖1),主要包括光伏-環路熱管(PV-LHP)和熱泵2個環路。PV-LHP環路主要由PV-T集熱/蒸發器和垂直螺旋管沉浸式冷凝器組成,水箱容積為150 L。熱泵環路中蒸發器采用無玻璃蓋板平直翅片平板式太陽能集熱器,冷凝器與熱管環路共用;壓縮機采用滾動轉子式。開啟閥門1和2,關閉閥門3和4,系統在PV-LHP模式下運行,PV/T集熱/蒸發器吸熱管中液態工質吸收太陽熱能并蒸發為汽態工質,汽態工質沿蒸汽上升管到達冷凝器,在冷凝器內冷凝液化將熱量傳給水箱中的冷卻水,液態工質在重力作用下,沿凝液下降管回到PV/T集熱/蒸發器,完成一次循環。同時,集熱/蒸發器表面間隔鋪設的光伏板接收一部分短波輻射轉化為電能。關閉閥門1和2,開啟閥門3和4,系統則以熱泵模式運行。系統主要設備結構參數見文獻[25]。

圖1 光伏-環路熱管/熱泵熱水系統原理圖
用戶需求水溫設定為45 ℃,系統優先以PV-LHP模式運行,考慮到熱管啟動負荷需求,并達到最大程度利用太陽能、節約傳統能源的目的,其運行時段設定為8:00—14:00。該運行模式結束后若水溫不達標,則啟動熱泵模式繼續加熱。
根據能量守恒及熱力學第一定律,分別建立了PV-LHP和熱泵環路模型,PV-LHP模型主要包括PV/T集熱/蒸發器和冷凝器模型,其中PV/T集熱/蒸發器模型主要包括太陽能集熱模型,各結構層及部件的能量平衡方程,冷凝器模型則由熱管冷凝段和冷卻水的能量平衡方程組成。為了簡化該復合系統的模擬計算,熱泵環路采用了經驗擬合模型[25],模型中重點考慮了室外空氣溫度、冷凝器端入口水溫及太陽輻射照度3個主要因素的影響。基于試驗測試數據,驗證了所建模型的準確性[25]。
基于所建系統模型,本文模擬分析了相同安裝傾角和朝向下系統在不同氣候區的運行性能,進一步分析比對了安裝傾角與朝向對其節能性、經濟性的影響,并對其進行了優化,為該系統的實際工程應用提供參考。
本文選取北京(40N°,116°E)、上海(31N°,121°E)、廣州(23N°,113°E)為寒冷、夏熱冬冷以及夏熱冬暖地區的代表城市。氣象參數統一引用Trnsys軟件中3個城市的典型氣象年參數,模擬中設定水箱初始水溫相同,春秋過渡季水箱初始水溫15 ℃,夏、冬兩季分別取20、5 ℃。
3座城市月平均空氣溫度及太陽輻射照度如圖2所示。廣州地區月平均空氣溫度明顯高于其余兩地,北京、上海、廣州月平均空氣溫度分別在270.61~300.95、278.21~302.27及288.07~303.37 K范圍內浮動,3個地區典型年最高月平均太陽輻射照度分別為544.2、499.5和529.1 W/m2,最小值分別為334.7、271.9、243.7 W/m2。
為了明確氣象條件對系統運行性能的影響,擬采用相同安裝傾角(35°)和朝向(正南)模擬分析系統在3個地區的全年運行性能變化規律。

圖2 月平均空氣溫度及太陽輻射照度
圖3顯示的是系統在3個地區的月均太陽能供熱百分比和凈耗電量。可以得出,系統在北京、上海、廣州的年均凈耗電量分別是229.85、233.01和128.94 kWh,年均太陽能供熱百分比分別是57.42%、53.35%、58.45%。系統在廣州凈耗電量比北京、上海分別減少43.9%、44.7%。這是由于廣州地處夏熱冬暖地區,該氣候區的氣溫年較差和日較差均小,太陽輻射照度較高,這種氣象條件更有利于系統2種模式的運行。模擬結果顯示,相比北京、上海,系統在廣州的年均光電效率略低,年均光熱效率則高出8.33%和5.72%,年均光電光熱綜合效率分別高出8.19%和5.58%。從太陽能光電光熱綜合利用的角度出發,系統在廣州適用性最強,其次是上海、北京。

圖3 月均凈耗電量與太陽能供熱百分比
對于固定式安裝的PV/T集熱/蒸發器,其安裝傾角與朝向對系統光電光熱性能影響較大,而理想的安裝傾角與朝向隨氣候條件變化顯著。因此,有必要針對系統的安裝傾角與朝向進行優化,以進一步確保系統在各氣候區運行的可靠性。
首先,基于緯度修正法,確定安裝傾角的變化范圍,北京選取35°、40°、45°、52°,上海選取25°、30°、35°、40°,廣州則以18°、23°、28°、33°為代表。基于上述不同傾角,模擬計算了集熱器表面月平均輻射量、系統的發電量和集熱量,計算結果顯示:系統的集熱量與發電量變化趨勢與月平均輻射量保持一致。以集熱器表面接收更多輻射量為目標,初步選定3個地區的較優安裝傾角,北京為35°、52°,上海為35°、25°,廣州則是35°、20°。基于此,進一步模擬分析了系統在3種地區運行性能隨安裝傾角的變化情況,結果如表1所示。以太陽能供熱百分比最大為目標,最終選定系統在北京、上海、廣州的理想安裝傾角分別為35°、25°、35°。

表1 不同安裝傾角下系統的運行性能對比
基于最優安裝傾角,進一步模擬計算了系統運行性能隨方位角的變化規律,考慮的朝向有?45°、?30°(南偏東為負),0°(正南),30°、45°(南偏西為正),結果如表2所示。由結果可以得出,在北京,PV/T集熱/蒸發器朝正南方向安裝時,年太陽能供熱百分比最高,達57.42%;年凈耗電量最低,與其他朝向相比依次減少12.9%、6.4%、8.3%及18.0%。在上海,PV/T集熱/蒸發器朝正南方向安裝時,年凈耗電量和太陽能供熱百分比最佳,與南偏西45°相差最大,與其余朝向相比,略有優勢。在廣州,則朝向?30°安裝時性能最優,與0°和?45° 2個朝向相差不多,與南偏西的2個系統相比,節能率分別提升10.1%和16.15%。

表2 年凈耗電量和太陽能供熱百分比
注:0°表示正南。
Note: 0° represents the south.
綜上可得,在不同氣候條件下,安裝傾角和朝向不同,對系統性能影響程度也不同。在所推薦的理想安裝傾角和朝向下,北京、廣州兩地的節能效果較優,太陽能供熱百分比分別為57.42%和58.45%,上海稍低為53.82%。
基于上述性能模擬分析結果,進一步采用全壽命周期成本(life cycle cost,LCC)分析方法評估優化后的系統在不同氣候區應用的經濟可行性。LCC由初投資費用與運行、維護費用組成,系統的現值可由下式計算

式中為系統的現值,元;為系統第一年運行維護費用,元;為折現率;為壽命周期。
系統初投資根據各部件在當地的平均價格取值,系統第一年的維修費用按初投資的2%計算,運行和維護費用的通貨膨脹率和折現率分別為2%和5%,設定系統的發電量采用“全額上網”模式提供給國家電網,并將獲取發電補貼考慮到系統運行費用中,計算結果列于表3、表4。可以看出,所研究系統的初投資是傳統空氣源熱泵系統的2.5倍。但是,由于其年耗電量只有空氣源熱泵系統的一半左右,并且系統的年發電量占其耗電量的一半以上,北京、上海、廣州的太陽能供電比例分別為53%、51%和66%,因此,整個壽命周期內,與傳統空氣源熱泵系統相比,該系統運行維護費用降幅明顯,北京、上海、廣州分別減少了67.86%、59.00%、62.21%,系統的LCC分別減少58.75%、49.83%及53.09%。綜上,雖然所研究系統初投資較高,但從全壽命周期來看,其運行經濟效果顯著。

表3 光伏-環路熱管/熱泵熱水系統的LCC分析

表4 空氣源熱泵熱水系統LCC分析
本文以太陽能光伏-環路熱管/熱泵熱水系統為研究對象,模擬分析了系統在3種不同氣候區的運行性能,優化了PV/T集熱/蒸發器的安裝傾角與朝向。在此基礎上,采用LCC分析方法評估了系統的經濟效益。主要結論如下:
1)PV/T集熱/蒸發器按照相同安裝傾角和朝向設置時,系統在廣州的太陽能供熱百分比最高,達到58.45%,耗電量最少,節能效果最顯著。從太陽能光電光熱綜合利用的角度出發,系統在廣州適用性最強,其次是上海、北京。
2)不同氣候條件下,安裝傾角和朝向對系統性能的影響程度不同,為提高系統的太陽能利用效率,應對其安裝傾角和朝向進行優化。在理想的安裝傾角和朝向下,北京、廣州兩地的節能效果較優,太陽能供熱百分比分別可達57.42%和58.45%,上海稍低,為53.82%。
3)與傳統空氣源熱泵系統相比,系統初投資顯著提高,但在整個壽命周期內,系統的運行維護費用降幅明顯,LCC依次減少58.75%、49.83%及53.09%,經濟效益顯著。
[1] Musarrat J, Muhammad U, Muhammad Z, et al. Social- economic prospect of solar technology utilization Abbottabad, Pakisutan[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 1164-1172.
[2] Halawa E, Chang K C, Yoshinaga M. Thermal performance evaluation of solar water heating system in Australia, Taiwan and Japan: A comparative review[J]. Renewable Energy, 2015, 85: 1279-1286.
[3] Joubara H, Milko J, Danielewicz J, et al. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy active building envelope material[J]. Energy, 2016, 108: 148-154.
[4] Zhang Bingzhi, Lv Jian, Yang Hongxing, et al. Performance analysis of a heat pipe PV/T system with different circulation tank capacities[J]. Applied Thermal Engineering, 2015, 87: 89-97.
[5] Liu Lingkun, Jia Yuting, Lin Yaxue, et al. Performance evaluation of a novel solar photovoltaic thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid[J]. Energy Conversion and Management, 2017, 145: 30-40.
[6] Chung-Feng J K, Lee Y W, Mega L U, et al. Dynamic modeling, practical verification and energy benefit analysis of a photovoltaic and thermal composite system[J]. Energy Conversion and Management, 2017, 154: 470-481.
[7] Zhao Xudong, Wang Zhangyuan, Tang Qi. Theoretical investigation of a novel loop heat pipe solar water heating system for use in Beijing, China[J]. Applied Thermal Engineering, 2010, 30: 2526-2536.
[8] Bennett K W, Mahmoud A, Jiang Lun, et al. Design simulation and experimental characterization of a novel parabolic trough hybrid solar photovolticathermal (PVT) collector[J]. Renewable Energy, 2017, 101: 1379-1389.
[9] Azad E. Theoretical and experimental investigation of heat-pipe solar collector[J]. Experimental Thermal and Fluid Science, 2008, 32: 1666-1672.
[10] Chaabane M, Charfi W, Mhiri H. et al. Performance evaluation of concentration solar photovoltaic and photovoltaic/thermal systems[J]. Science Direct, 2013, 98: 315-321.
[11] Sudhakar P, Kumaresan G, Velraj R. Experimental analysis of solar photovoltaic unit integrated with free cool thermal energy storage system[J]. Solar Energy, 2017, 158: 837-844.
[12] Salem M R, Ali R K, Elshazly K M. Experimental investigation of the performance of a hybrid photovol/thermal solar system using aluminium cooling plate with straight and helical channels[J]. Solar Energy, 2017, 157: 147-156.
[13] Pei Gang, Zhang Tao, Fu Huide, et al. Experimental study on a noval heat pipe-type photovoltaic/thermal system with and without glass covers[J]. Green Energy, 2012, 10: 72-89.
[14] 王璋元,楊晚生,趙旭東. 新型環路熱管太陽能熱水系統節能減排評估[J]. 太陽能學報,2014,35(5):825-829.
Wang Zhangyuan, Yang Wansheng, Zhao Xudong. Energy-saving and carbon emission reduction evaluations of a novel loop heat pipe solar water heating system[J]. Acta Energiae Solaris Sinica, 2014, 35(5): 825-829. (in Chinese with English abstract)
[15] Sweidan A, Ghaddar N, Ghali K. Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage[J/OL]. Joumal of Renewable and Sustainable Energy, 2016, 8: 023501.
[16] Moradgholi M, Mostafa S N, Abrishamchi I. Application of heat pipe in an experimental investigation on a novel photovoltaic thermal (PV/T) system[J]. Science Direct, 2014, 107: 82-88.
[17] Pei Gang, Zhang Tao, Yu Zhi, et al. Comparative study of a noval heat pipe photovoltaic/thermal collector and a water thermos siphon photovoltaic/thermal collector[J]. Power Energy, 2011, 225: 271-278.
[18] Fu Huide, Pei Gang, Ji Jie, et al. Experimental study of a photovoltaic solar assisted heat-pump/heat-pipe system[J]. Applied Thermal Engineering, 2012, 40: 343-350.
[19] Zhao Xuxin, Fu Huide, Ji Jie. et al. Comparative study on performances of a heat-pipe PV/T system and a heat-pipe solar water heating system[J]. International Journal of Green Energy, 2016, 13(3): 229-240.
[20] 李洪,侯平煒,孫躍. 太陽能光伏環路熱管熱水系統光電光熱性能試驗[J]. 農業工程學報,2018,34(7):235-240.
Li Hong, Hou Pingwei, Sun Yue. Experimental study on a solar photovoltaic/loop-heat-pipewater heating system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 235-240. (in Chinese with English abstract)
[21] Zhang Xingxing, Zhao Xudong, Shen Jingchun, et al. Design, fabrication and experimental study of a solar photovoltaic/ loop-heat-pipe based heat pump system[J]. Acta Energiae Solaris Sinica, 2013, 97: 551-568.
[22] He Wei, Hong Xiaoqiang, Zhao Xudong, et al. Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe facade-based heat pump water heating system[J]. Energy and Buildings, 2017, 77: 180-191.
[23] 張龍燦,裴剛,張濤,等. 新型光伏-太陽能環形熱管/熱泵復合系統[J]. 化工學報,2014,65(8):3228-3236.
Zhang Longcan, Pei Gang, Zhang Tao, et al. A new photovoltaic solar-assisted loop heat pipe/heat pump system[J]. Journal of Chemical Industry, 2014, 65(8): 3228-3236. (in Chinese with English abstract)
[24] Li Hong, Sun Yue. Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system[J]. Energy and Buildings, 2018, 158: 861-872.
[25] Li Hong, Sun Yue. Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system[J]. Renewable Energy, 2019, 134: 1240-1247.
[26] Zhang Xingxing, Shen Jingchun, Adkins D. et al. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (PV-LHP-STF) heat pump water heating system: Thchno-economic analysis in three European climates[J]. Energy Conversion and Management. 2015, 106: 964-986.
[27] 李嘯宇,唐潤生. 太陽能熱水器安裝傾角的優化[J]. 云南師范大學學報,2017,37(4):10-16.
Li Xiaoyu, Tang Runsheng. Optimizing the tilt angle of domestic solar water heater[J]. Journal of Yunnan Normal University, 2017, 37(4): 10-16. (in Chinese with English abstract)
[28] Jafarkazemi F, Saadabadi S A. Optimum tilt angle and orientation of solar surfaces in AbuDhabi[J]. Energy Conversion, 2013, 56(4): 44-49.
[29] Stanciu C, Stanciu D. Optimum tilt angle for flat plate collectors all over the World-A declination dependence formula and comparisons of three solar radiation models[J]. Energy Coversion & Management, 2014, 81(2): 133-143.
[30] 何適均,張雨,周文君. 太陽能熱水系統集熱器最佳傾角的確定[J]. 太陽能學報,2012,33(6):924-926.
He Shijun, Zhang Yu, Zhou Wenjun. The affirmance of optimum tilt angle for solar collector[J]. Acta Energiae Solaris Sinica, 2012, 33(6): 924-926. (in Chinese with English abstract)
Feasibility comparison and optimization on a loop-heat-pipe type PV/T heat pump water heating system in different climatic regions
Li Hong, Wang Meifang, Zhang Man
(,,066004,)
In this paper, energy performance of a loop-heat-pipe (LHP) type solar photovoltaic/thermal (PV/T) heat pump water heating system is studied to evaluate its feasibility in three different climatic regions. A mathematic model of this system in our former study is built and validated using outdoor test data. On the basis of this model, influences of main structural design parameters including the installation angle and the orientation of the PV/T collector/evaporator are discussed and main parameters are optimized to further improve system operation performance. Based on optimal design parameters, economic feasibility of the proposed system under different weather conditions is analyzed using the life cycle cost (LCC) method. The system is integrated with solar PV/T, loop heat pipe and solar assisted air source heat pump technologies. This combined approach is benefit for improving solar energy comprehensive application efficiency of conventional solar PV/T systems. Moreover, it enlarges the application region of traditional air source heat pump water heating systems. Depending on different solar radiation conditions, this system can operate in different modes including solar photovoltaic LHP mode, solar assisted air source heat pump mode and the only air source heat pump mode. In this study, Beijing, Shanghai and Guangzhou were selected as typical representative cities in cold area, hot summer and cold winter area, hot summer and warm winter area. Typical meteorological year (TMY) data of three cities were extracted from TRNSYS. Based on TMY data, annual operation performance of the proposed system is calculated through the validated dynamic mathematic model. Firstly, PV/T collector/evaporators of three systems are all fixed in the south direction and the same installation angle (35°) was chosen. In this case, annual net power consumptions and solar heating fractions of three systems are calculated and compared. Then installation angles and orientations are optimized to ensure maximum solar energy application. The investigation results show that, among three cities, the solar heating fraction in Guangzhou is the largest. And the least electricity is consumed in Guangzhou, which is decreased by 43.9% and 44.7% respectively compared with those in Beijing and Shanghai. The comprehensive photothermal efficiency in Guangzhou is 8.19%, 5.58% higher than those in Beijing and Shanghai. Therefore, from the view of solar energy comprehensive efficient utilization, the application of the system is most proposed in Guangzhou, and then followed by Shanghai and Beijing. Considering impacts of installation angles and orientations, the ideal installation inclination of the system in Beijing, Shanghai and Guangzhou are 35°, 25°, and 35°, and the optimal installation directions of Beijing and Shanghai are facing the south, while that of Guangzhou is 30°east to the south. With the optimal parameters, it is found that solar heating fractions in Beijing and Guangzhou (i.e. 57.42% and 58.45%) are slightly higher than that in Shanghai. It is concluded that influences of two structural parameters are different for such system in different climatic areas. To ensure maximal solar energy application, it was necessary to optimize these two parameters. For the life cycle cost analysis, a traditional air source heat pump hot water heating system is chosen as the base system. The analysis results indicate that the initial investment of the system increases significantly, which is 2.5 times of that of the base system. However, the annual power consumption of the system is about half of that of the traditional system. Besides, solar power supply fractions in Beijing, Shanghai and Guangzhou are 53%, 51% and 66% respectively. As a result, the total operation and maintenance fees in the life cycle drop significantly, which are reduced by 67.86%, 59.00%, and 62.21% in Beijing, Shanghai and Guangzhou. The life cycle cost is correspondingly reduced by 58.75%, 49.83% and 53.09% in three cities. In conclusion, the application of this system is feasible for considered weather conditions in terms of both the operating performance and economic benefits.
solar energy; heat pump; efficiency; climatic conditions; operation performance
李 洪,王美芳,張 曼. 光伏-環路熱管/熱泵熱水系統在不同氣候區性能對比與優化[J]. 農業工程學報,2020,36(1):252-256.doi:10.11975/j.issn.1002-6819.2020.01.030 http://www.tcsae.org
Li Hong, Wang Meifang, Zhang Man. Feasibility comparison and optimization on a loop-heat-pipe type PV/T heat pump water heating system in different climatic regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 252-256. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.030 http://www.tcsae.org
2019-06-28
2019-08-26
河北省高等學校科學技術研究項目(ZD2018031)
李 洪,博士,副教授,研究方向為復合熱源熱泵技術及太陽能光熱綜合利用技術。Email:be_leecandy@163.com
10.11975/j.issn.1002-6819.2020.01.030
TE0
A
1002-6819(2020)-01-0252-05