胡昕宇,嚴(yán)海軍,陳 鑫
考慮肥料溶解的壓差施肥罐出口肥液濃度計(jì)算方法
胡昕宇,嚴(yán)海軍,陳 鑫※
(1. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;2. 中國農(nóng)業(yè)大學(xué)北京市供水管網(wǎng)系統(tǒng)安全與節(jié)能工程技術(shù)研究中心,北京 100083)
壓差施肥罐在中國的水肥一體化中得到了十分廣泛的應(yīng)用。該研究基于含源項(xiàng)的肥料輸移擴(kuò)散連續(xù)方程推導(dǎo)了考慮肥料溶解的壓差施肥罐出口肥液濃度變化的理論公式,并通過參數(shù)描述肥料溶解過程對(duì)壓差施肥罐出口肥液濃度變化的影響。通過與試驗(yàn)數(shù)據(jù)對(duì)比,理論公式計(jì)算的無量綱出口肥液濃度平均絕對(duì)偏差、均方差、幾何平均偏差、幾何方差和兩倍偏差之間的預(yù)測分?jǐn)?shù)的平均值分別為0.04、0.06、0.89、1.19和88.26%,驗(yàn)證了理論公式對(duì)出口肥液濃度計(jì)算的準(zhǔn)確性。當(dāng)參數(shù)取特定值時(shí),理論公式可以轉(zhuǎn)化為目前廣泛應(yīng)用的無量綱出口肥液濃度壓差施肥罐出口肥液濃度的負(fù)指數(shù)公式。在此基礎(chǔ)上,當(dāng)罐內(nèi)肥液濃度持續(xù)飽和且有充足的肥料可供長期溶解施肥時(shí),考慮肥料溶解過程的均勻施肥方法被進(jìn)一步探討。該研究提出的考慮肥料溶解的壓差施肥罐出口肥液濃度的計(jì)算方法可以實(shí)現(xiàn)壓差施肥罐出口肥液濃度的準(zhǔn)確預(yù)測,為考慮肥料溶解的均勻施肥提供可行方案。
肥料;溶解;水肥一體化;壓差施肥罐;出口濃度;理論公式;均勻施肥
施肥作業(yè)對(duì)中國的糧食產(chǎn)量做出了巨大貢獻(xiàn)[1],但肥料過量使用和低利用率對(duì)土壤、水環(huán)境和空氣造成了不同程度的污染[2-3]。研究表明,降低肥料使用量和提高肥料利用率可以在不影響產(chǎn)量的前提下減輕對(duì)環(huán)境的破壞[4-5]。因此,優(yōu)化現(xiàn)有施肥設(shè)備與施肥方法對(duì)中國的農(nóng)業(yè)發(fā)展具有重要意義。壓差施肥罐由于成本低、使用簡便等優(yōu)點(diǎn),在中國微灌水肥一體化系統(tǒng)中應(yīng)用十分廣泛[6-9]。準(zhǔn)確描述不同工作條件下壓差施肥罐出口肥液濃度隨時(shí)間的變化過程,可以為應(yīng)用壓差施肥罐的微灌系統(tǒng)的優(yōu)化設(shè)計(jì)和運(yùn)行、特別是以最優(yōu)濃度實(shí)現(xiàn)均勻施肥提供合理建議。因此壓差施肥罐出口濃度的計(jì)算方法值得進(jìn)一步探究[10]。
目前,已有不少壓差施肥罐出口肥液濃度隨時(shí)間變化規(guī)律的研究。封俊等[11-12]假定水肥瞬間混合均勻且罐內(nèi)肥液濃度均勻分布,結(jié)合試驗(yàn)數(shù)據(jù)較早提出了壓差施肥罐出口肥液濃度負(fù)指數(shù)衰減的理論公式。孟一斌等[6,13]對(duì)不同施肥量和壓差等條件下壓差施肥罐出口肥液濃度的動(dòng)態(tài)變化過程進(jìn)行了測試分析,建立了估算壓差施肥罐出口肥液濃度的回歸模型。鄧蘭生等[14-20]通過試驗(yàn)分析了應(yīng)用壓差施肥罐進(jìn)行施肥時(shí)壓差、罐體體積、進(jìn)出口管徑、流量以及肥料品種、形態(tài)、用量等因素對(duì)出口肥液濃度衰減過程的影響。韓啟彪等[21-22]應(yīng)用計(jì)算流體動(dòng)力學(xué)中的兩相流模型及組分輸運(yùn)模型對(duì)壓差施肥罐出口肥液濃度衰減過程進(jìn)行了模擬研究,探討了數(shù)值模擬方法預(yù)測壓差施肥罐出口肥液濃度變化的可行性,并在肥料完全溶解且水肥瞬間混合均勻的前提下建立了基于壓差施肥罐的均勻施肥方法。然而在實(shí)際施肥過程中,罐內(nèi)通常會(huì)有大量肥料不斷溶解,較大地影響以上研究的結(jié)論。基于以上工作,還需要考慮肥料溶解過程,提出壓差施肥罐出口肥液濃度的計(jì)算方法服務(wù)于壓差施肥罐的水肥一體化施肥作業(yè)。
本研究考慮肥料溶解過程的影響,借助含源項(xiàng)的肥料輸移擴(kuò)散連續(xù)方程并通過參數(shù)描述肥料溶解,推導(dǎo)壓差施肥罐出口肥液濃度變化的理論公式。在此基礎(chǔ)上,以最優(yōu)濃度實(shí)現(xiàn)均勻施肥為目標(biāo),提出在特殊工況下考慮肥料溶解過程的均勻施肥方法,以用于指導(dǎo)壓差施肥罐的施肥作業(yè),為應(yīng)用壓差施肥罐的微灌系統(tǒng)的優(yōu)化設(shè)計(jì)和運(yùn)行提供參考。
在壓差施肥罐施肥過程中,肥料輸運(yùn)可以通過含源項(xiàng)的物質(zhì)輸移擴(kuò)散連續(xù)方程進(jìn)行描述[23],如式(1)。

式中為罐內(nèi)任一點(diǎn)的肥液濃度,%;為施肥時(shí)間,s;x(=1,2,3)為笛卡爾坐標(biāo)系中的3個(gè)方向;u為水流在x方向的速度,m/s;ν為肥料離散系數(shù),m2/s;ν為紊動(dòng)擴(kuò)散系數(shù),m2/s;代表肥料不斷溶解在輸移擴(kuò)散方程中產(chǎn)生的源項(xiàng),其量綱與溶解速度相同,1/s。對(duì)式(1)在罐體內(nèi)積分并通過積分變換[22],施肥罐出口肥液濃度可表示為

式中0為出口肥液濃度,%;為壓差施肥罐的進(jìn)口流量,m3/s;0()=∫∫∫d,是式(1)中源項(xiàng)在罐體區(qū)域的體積分,m3/s;為壓差施肥罐的體積,m3。式(2)的解是

如圖1所示,水流進(jìn)入壓差施肥罐后會(huì)發(fā)生劇烈翻轉(zhuǎn)和混合。參考Noyes-Whitney方程[24],同種肥料在水中的溶解速度與接觸表面積和肥液濃度與飽和濃度的濃度差有關(guān)。在施肥過程中,隨著水流流入,罐體底部的肥料不斷溶解,肥料與水的接觸表面積不斷減小,肥液濃度與飽和濃度的濃度差也不斷減小。因此t=0時(shí)S0最大,隨著施肥進(jìn)行S0會(huì)不斷減小至忽略不計(jì)。
考慮到肥料與水的接觸表面積和肥液濃度與飽和濃度的濃度差的衰減趨勢,0隨時(shí)間的變化關(guān)系可以簡化為負(fù)指數(shù)形式[25-26]。為了使出口肥液濃度公式簡潔,考慮Burt等[27]以有效施肥濃度為準(zhǔn)則定義的壓差施肥罐施肥時(shí)間=4/,本文定義0的表達(dá)式為

式中代表罐內(nèi)肥料初始溶解的速度,0≤≤1;代表罐內(nèi)肥料溶解速度下降的快慢,≥0。當(dāng)≠1時(shí),將式(4)代入式(3)得考慮肥料溶解的出口濃度理論公式為

當(dāng)0(0)為肥料的飽和濃度時(shí),若=1、=0,源項(xiàng)式(4)和出口肥液濃度式(5)均為常數(shù),此時(shí)罐內(nèi)肥液濃度持續(xù)飽和且有充足的肥料可供長期溶解施肥。
=1是式(5)的可去間斷點(diǎn)。當(dāng)=1時(shí),將式(4)代入式(3);或?qū)κ剑?)取=1極限,均得

當(dāng)=0或→∞時(shí),0=0,此時(shí)罐內(nèi)不存在肥料的溶解過程,式(5)退化為封俊等[11]提出的負(fù)指數(shù)衰減公式

式中C為負(fù)指數(shù)衰減公式的出口肥液濃度,%。這與封俊等的推導(dǎo)一致[11],此時(shí)肥料離散系數(shù)ν無窮大、罐內(nèi)肥料與水流瞬間均勻混合且無肥料溶解。現(xiàn)有研究主要采用隨時(shí)間呈負(fù)指數(shù)衰減的公式[6,10,13]逼近式(5),無肥料溶解時(shí)其指數(shù)值上限為4,即式(7);肥料的溶解使實(shí)際濃度大于式(7)的計(jì)算值,其指數(shù)值理論上小于4,如孟一斌等[6]和Li等[13]的擬合式


式中為壓差施肥罐的施肥量,kg;Δ為壓差施肥罐兩側(cè)的壓差,MPa;為壓差施肥罐的進(jìn)出口管徑,mm。式(8)的指數(shù)形式只考慮了施肥量和壓差2個(gè)因素,而式(9)的指數(shù)與施肥量、壓差、管徑和罐體體積有關(guān)。然而式(8)~式(9)只考慮了各自研究中的施肥試驗(yàn),并且均非基于量綱分析擬合而無法排除其他變量的影響,如壓差和流量有關(guān),罐體體積相同時(shí)直徑、高度亦有所區(qū)別,不同罐體能量損耗系數(shù)差異對(duì)流量影響不同,使得前述擬合精度較低。可靠的做法是確定式(4)中描述肥料溶解過程的和。
本節(jié)先分析和的變化對(duì)式(4)~式(6)的影響。基于式(4),圖2對(duì)比了當(dāng)和在各自取值范圍內(nèi)變化時(shí)(0≤≤1;≥0),無量綱源項(xiàng)(0()/(0(0)))隨無量綱時(shí)間(/)的變化規(guī)律。圖2a和2b分別為=0.5及=2.0時(shí),不同對(duì)應(yīng)的無量綱源項(xiàng)隨時(shí)間的衰減趨勢。在式(4)中表征罐內(nèi)肥料的初始溶解速度,當(dāng)取不同值時(shí),0的初始值不同,大小為0(0)。考慮到式(4)的負(fù)指數(shù)形式,在取值不發(fā)生變化的前提下,隨著的增大,相同時(shí)間內(nèi)0的衰減也會(huì)隨之增大。當(dāng)=0時(shí),罐內(nèi)肥料的溶解速度為0(0≡0),說明此時(shí)不存在肥料的溶解過程。圖2c和2d為=1.0時(shí),不同對(duì)應(yīng)的無量綱源項(xiàng)隨時(shí)間的變化。在式(4)中代表罐內(nèi)肥料溶解速度下降的快慢,當(dāng)保持不變時(shí),隨著的增大,0的衰減速度從0增大至∞,0衰減至0所需的時(shí)間也不斷縮短。當(dāng)=0時(shí),0恒等于0(0),此時(shí)肥料的溶解速度保持恒定,罐內(nèi)肥液濃度持續(xù)飽和;當(dāng)→∞時(shí),0恒等于0,說明罐內(nèi)不存在肥料的溶解。

注:Q為進(jìn)口流量,m3·s-1;C0(0)為出口初始肥液濃度,%;S0(t)為某時(shí)刻t源項(xiàng)S在罐體區(qū)域的體積分,m3·s-1;α代表罐內(nèi)肥料初始溶解的速度;β代表罐內(nèi)肥料溶解速度下降的快慢。下同。
基于式(5)~式(6),圖3對(duì)比了不同和取值無量綱化的出口肥液濃度(0()/0(0))隨無量綱時(shí)間(/)的變化過程。由于式(5)~式(6)是式(4)代入到式(3)中求解得到,因此,圖3中0的變化與圖2中0的變化過程對(duì)應(yīng)。圖3a和3b中在取值不發(fā)生變化時(shí),隨著的增大,0的衰減趨勢逐漸變緩,尤其是施肥初始階段0的變化曲線明顯平緩。這是由于的增大導(dǎo)致0的初始值增大(圖2a~圖2b),即更多的肥料溶解,因此導(dǎo)致的0衰減速度變緩。圖3c和3d中當(dāng)=1.0時(shí),0的衰減趨勢隨著的增大而逐漸明顯并且不斷逼近式(7)(→∞)。但相同的增量對(duì)0變化幅度的影響卻在逐漸減小。這是由于隨著的增大,肥料溶解速度的變化率從0增大到∞,0的衰減速度從0變化至∞(圖2c~圖2d),即肥料溶解過程對(duì)出口肥液濃度變化的影響越來越小。當(dāng)=0時(shí),0≡0(0),此時(shí)肥料的溶解速度保持恒定,罐內(nèi)肥液濃度恒為0(0);當(dāng)→∞時(shí),式(5)退化為負(fù)指數(shù)衰減的式(7),說明此時(shí)不存在肥料溶解。

注:C0(t)為某時(shí)刻t出口肥液濃度,%。
表1匯總了壓差施肥罐施肥試驗(yàn)的相關(guān)參數(shù)[13-20]并對(duì)不同作者的試驗(yàn)進(jìn)行編號(hào),其中出口肥液濃度的初始值0(0)通過/(+)計(jì)算,為水的密度。通過表1中相關(guān)文獻(xiàn)報(bào)道的實(shí)測數(shù)據(jù),圖4對(duì)比了出口肥液濃度的試驗(yàn)值與式(5)、式(7)~(9)的計(jì)算值,其中虛線是2倍偏差線。在應(yīng)用壓差施肥罐進(jìn)行施肥時(shí),0()/0(0)達(dá)到e-4時(shí)可以基本認(rèn)為施肥過程結(jié)束[21],因此圖4中坐標(biāo)的取值范圍為[e-4, e0]。

表1 壓差施肥罐施肥試驗(yàn)參數(shù)匯總
圖4a中式(5)對(duì)不同試驗(yàn)組處于[e-4, e0]區(qū)間的出口濃度的預(yù)測基本圍繞在試驗(yàn)值附近,只有對(duì)少數(shù)試驗(yàn)值的預(yù)測在2倍偏差以外。處于2倍偏差外的試驗(yàn)值主要集中在[e-4, e-2]區(qū)間內(nèi),此時(shí)0()/0(0)已經(jīng)處于10-2數(shù)量級(jí),式(5)的計(jì)算出現(xiàn)偏離的原因可能是試驗(yàn)過程中低肥液濃度的數(shù)據(jù)采集存在誤差。圖4b中式(7)對(duì)①②④試驗(yàn)組處于[e-4, e0]區(qū)間的試驗(yàn)值存在較為明顯的低估。由于式(7)的推導(dǎo)中認(rèn)為水肥瞬間混合均勻且無肥料的溶解過程[11],因此式(7)適用于試驗(yàn)中水肥混合較為均勻、肥料溶解過程不存在或存在時(shí)間較短的③⑤⑥試驗(yàn)組。而①②④試驗(yàn)組存在明顯肥料溶解使出口肥液濃度的實(shí)際衰減過程比式(7)更慢。

注:實(shí)線代表計(jì)算值與試驗(yàn)值相等;虛線為2倍偏差線;y為C0(t)/ C0(0)試驗(yàn)值;y′為C0(t)/ C0(0)計(jì)算值。
圖4c和圖4d中式(8)~式(9)對(duì)部分試驗(yàn)組出口肥液濃度的計(jì)算不夠準(zhǔn)確,如式(8)對(duì)試驗(yàn)組③⑤⑥的預(yù)測;式(9)對(duì)試驗(yàn)組②③④⑥中部分試驗(yàn)值的預(yù)測。式(8)~式(9)是基于作者試驗(yàn)結(jié)果的擬合式[6,13],其中指數(shù)的擬合并非基于量綱分析因而無法排除其他變量影響,因此對(duì)于部分試驗(yàn)組的計(jì)算結(jié)果不夠準(zhǔn)確。綜合圖4的結(jié)果,與式(7)~式(9)相比,考慮肥料溶解過程的出口肥液濃度理論公式(式(5))適用于不同的施肥試驗(yàn)和施肥工況并實(shí)現(xiàn)了較為準(zhǔn)確的出口肥液濃度預(yù)測。
表2提供了圖4中式(5)、式(7)~式(9)計(jì)算準(zhǔn)確性的定量評(píng)價(jià),使用了計(jì)算效果評(píng)估中常用的5個(gè)指標(biāo)[28-29],其中MAE是平均絕對(duì)偏差;RMSE是均方差;MG是幾何平均偏差;VG是幾何方差;FAC2是2倍偏差之間的預(yù)測分?jǐn)?shù)。當(dāng)各時(shí)刻計(jì)算值與試驗(yàn)值均相等時(shí),MAE=0、RMSE=0、MG=1、VG=1、FAC2=100%。但通常當(dāng)計(jì)算結(jié)果的評(píng)估指標(biāo)滿足0.70
式(5)計(jì)算的MAE、RMSE、MG、VG和FAC2的平均值分別為0.04、0.06、0.89、1.19和88.26%,對(duì)不同試驗(yàn)組基本滿足評(píng)估指標(biāo)的范圍要求,說明式(5)能夠較準(zhǔn)確地預(yù)測出口濃度。式(7)對(duì)應(yīng)的MG和VG的平均值分別為1.78(>1.30)和3.82,出現(xiàn)偏離的原因是式(7)對(duì)試驗(yàn)組①②④出口濃度的計(jì)算出現(xiàn)了低估(圖 4b)。式(8)對(duì)應(yīng)的MG和VG的平均值分別為2.47(>1.30)和21.09,出現(xiàn)偏離的原因是式(8)對(duì)試驗(yàn)組③⑤⑥的計(jì)算存在較明顯的低估(圖4c)。式(9)對(duì)應(yīng)的MG和VG的平均值分別為0.58(<0.70)和7.31,出現(xiàn)偏離的原因是式(9)對(duì)試驗(yàn)組②③④⑥部分試驗(yàn)值的計(jì)算存在高估(圖4d)。式(5)、式(7)~式(9)對(duì)應(yīng)的FAC2的平均值均大于50%。但對(duì)于部分試驗(yàn)組,如式(7)、式(9)對(duì)試驗(yàn)組②的計(jì)算和式(8)對(duì)試驗(yàn)組⑥的計(jì)算,出現(xiàn)了FAC2為20%~40%的結(jié)果。這同樣說明式(7)~式(9)對(duì)部分試驗(yàn)組的計(jì)算存在較大偏差。表2的定量評(píng)價(jià)結(jié)果表明,對(duì)于表1中的6組施肥試驗(yàn),式(5)的計(jì)算性能優(yōu)于式(7)~式(9)。

表2 式(5)、式(7)~式(9)計(jì)算準(zhǔn)確性的定量評(píng)價(jià)
6組施肥試驗(yàn)中試驗(yàn)組①②④存在較明顯的肥料溶解過程,而試驗(yàn)組③⑤⑥在施肥過程中肥料溶解現(xiàn)象不存在或存在時(shí)間很短。表3選取了各試驗(yàn)組中的典型工況并列出了各工況的相關(guān)參數(shù),各工況對(duì)應(yīng)的和列在表中。
圖5對(duì)比了各工況無量綱源項(xiàng)隨無量綱時(shí)間的變化過程。工況5的0變化過程與工況3類似,工況6的0恒等于0(=0),即不存在肥料的溶解過程,因此工況5和工況6圖形省略。工況1(圖5a)0的初始值為0(0)(=1.00),但0的衰減速度很快(=0.91),在/=1時(shí)基本衰減至0。工況4(圖5d)0初始值同樣為0(0)(=1.00),但0的衰減速度較慢(=0.43),在/=3時(shí)基本衰減至0。工況2(圖5b)0初始值為0.270(0)(=0.27),且衰減速度很慢(=0.06)。在/=0~4時(shí)間段內(nèi)0從0.270(0)近似線性地減小至0.110(0),說明在該時(shí)段內(nèi)長期存在一定程度的肥料溶解。工況1、工況2和工況4對(duì)應(yīng)的0隨時(shí)間的變化過程說明試驗(yàn)組①②④的試驗(yàn)過程中存在較明顯的肥料溶解。肥料溶解量的多少和溶解過程存在時(shí)間的長短與具體施肥試驗(yàn)參數(shù)有關(guān)。工況3(圖5c)0的初始值為0.080(0),且0的衰減速度很快(=0.78),在/=1時(shí)基本衰減至0。工況3、工況5和工況6中0的變化過程說明試驗(yàn)組③⑤⑥的試驗(yàn)過程中肥料溶解量較小、溶解過程存在時(shí)間較短或不存在肥料的溶解。
圖6對(duì)比了/=0?4時(shí)間段內(nèi)各工況無量綱的出口肥液濃度的試驗(yàn)值與式(5)、式(7)~(9)的計(jì)算值。在施肥過程時(shí),單位時(shí)間流出壓差施肥罐的肥料總量為0(),單位時(shí)間肥料的溶解總量為0()。當(dāng)0()<0()時(shí),肥料的溶解會(huì)使出口肥液濃度不斷升高,直至0()=0()。考慮到0(0)≥0(0)(0≤≤1),因此0()<0()的情況在實(shí)際施肥過程中不會(huì)出現(xiàn)。相反,當(dāng)0()>0()時(shí),由于流出的肥料量大于溶解的肥料量,此時(shí),出口肥液濃度便會(huì)不斷降低。當(dāng)0()=0()時(shí),此時(shí)流出的肥料量與溶解的肥料量相等,壓差施肥罐內(nèi)溶于水的肥料總量處于動(dòng)態(tài)平衡狀態(tài),出口肥液濃度保持恒定。工況1(圖 6a)0在施肥初始階段衰減較慢,隨后衰減較為迅速,這與工況1的0初始值較大但衰減迅速的變化過程對(duì)應(yīng)(圖 5a)。與工況1相比,工況4(圖6d)0的衰減速度較慢,這與工況4的0初始值較大且衰減較慢的變化過程一致(圖5d)。工況2(圖 6b)0在施肥初始階段衰減較快,隨后的衰減逐漸變緩,這與圖5c中工況2的0初始值較小但衰減速度很慢保持一致。對(duì)于工況2,當(dāng)0減小至0.20(0)時(shí)(/=1.5),相應(yīng)的0=0.190(0),在此后的一段時(shí)間內(nèi)(/=1.5?4)0()與0()的大小非常接近,因此0在這段時(shí)間內(nèi)比較穩(wěn)定,變化幅度很小。而工況3(圖6c)、工況5和工況6中由于肥料溶解量較小、溶解過程存在時(shí)間較短或不存在肥料溶解,因此式(5)的計(jì)算值與式(7)相比非常接近或完全相等。與圖4中的對(duì)比結(jié)果一致,式(7)對(duì)工況1、工況2和工況4試驗(yàn)值的預(yù)測存在較明顯的低估,其原因是式(7)沒有考慮施肥過程中的肥料溶解。擬合式(8)~式(9)由于不是基于量綱分析的擬合,并且只考慮了各自研究中的施肥試驗(yàn),因此對(duì)部分工況試驗(yàn)值的預(yù)測也存在一定程度的高估或低估。式(8)由于只考慮了施肥量和壓差2個(gè)因素,因此出現(xiàn)的預(yù)測偏差更為明顯。
表3中工況1~6式(5)、式(7)~(9)計(jì)算值對(duì)應(yīng)的MAE平均值分別為0.020、0.102、0.127和0.124。式(7)~式(9)的MAE平均值是式(5)的5.1、6.4和6.2倍,這說明對(duì)于部分工況式(7)~式(9)的計(jì)算偏差較為明顯。與式(7)~式(9)相比,式(5)可以合理地描述肥料溶解對(duì)出口肥液濃度的影響,進(jìn)而能夠?qū)崿F(xiàn)對(duì)不同時(shí)刻出口肥液濃度的準(zhǔn)確計(jì)算。

表3 各試驗(yàn)組典型工況參數(shù)匯總

圖5 不同工況S0(t)/(QC0(0)) 隨時(shí)間的變化

圖6 不同工況C0(t)/C0(0)隨時(shí)間的變化
關(guān)于壓差施肥罐的均勻施肥方法,已經(jīng)開展了相關(guān)工作[22]。但該方法基于肥料完全溶解并且水肥混合均勻的條件下通過流量控制實(shí)現(xiàn)。當(dāng)罐體內(nèi)存在肥料溶解時(shí),流量的變化會(huì)對(duì)罐內(nèi)的水肥混合和肥料的溶解過程產(chǎn)生影響,因此均勻施肥方法的理論推導(dǎo)難度將會(huì)大大增加。考慮到=1、=0時(shí),式(4)~式(5)均為常數(shù),即0()=0(0)=0()。流出的肥料量與溶解的肥料量相等,罐內(nèi)肥液濃度飽和且有充足的肥料可供長期溶解施肥。對(duì)于該特殊解,可以建立考慮肥料溶解過程的均勻施肥方法,如圖7所示。當(dāng)=1、=0時(shí)出口肥液濃度恒為0(0),此時(shí)只需滿足(+0)C=0(0),即0=(0(0)-C)/C,便可實(shí)現(xiàn)施肥流量為+0、施肥濃度為C的均勻施肥過程。但在實(shí)際生產(chǎn)中,壓差施肥罐體積通常較小,化肥的水溶性也存在差異。因此需要設(shè)計(jì)生產(chǎn)專用的體積較大的壓差施肥罐,并使用水溶性好的化肥,以實(shí)現(xiàn)罐內(nèi)肥液濃度飽和且有充足的肥料可供長期溶解施肥這一特殊工況。

注:Q0為流過主管道的流量,m3·s-1;Cu為均勻施肥的最優(yōu)濃度,%。
為了更準(zhǔn)確地描述壓差施肥罐出口肥液濃度的變化過程,本研究推導(dǎo)了考慮肥料溶解的出口肥液濃度理論公式,并初步探討了考慮肥料溶解的均勻施肥方法。主要結(jié)論如下:
1)基于含源項(xiàng)的肥料輸移擴(kuò)散連續(xù)方程推導(dǎo)得到了出口肥液濃度變化的微分方程,并引入?yún)?shù)描述肥料溶解過程對(duì)壓差施肥罐出口肥液濃度的影響,得到了出口肥液濃度變化的理論公式。通過與現(xiàn)有試驗(yàn)數(shù)據(jù)對(duì)比,理論公式計(jì)算結(jié)果的平均絕對(duì)偏差、均方差、幾何平均偏差、幾何方差和兩倍偏差之間的預(yù)測分?jǐn)?shù)的平均值分別為0.04、0.06、0.89、1.19和88.26%,驗(yàn)證了理論公式對(duì)出口肥液濃度的計(jì)算準(zhǔn)確性。當(dāng)參數(shù)取特定值時(shí),理論公式可以轉(zhuǎn)化為目前廣泛應(yīng)用的壓差施肥罐出口肥液濃度的負(fù)指數(shù)公式。與負(fù)指數(shù)公式及試驗(yàn)擬合公式相比,本文提出的理論公式可以合理地描述肥料溶解對(duì)出口肥液濃度的影響,進(jìn)而能夠?qū)崿F(xiàn)對(duì)出口肥液濃度的準(zhǔn)確計(jì)算。
2)當(dāng)罐內(nèi)肥液濃度持續(xù)飽和且有充足的肥料可供長期溶解施肥時(shí),提出了考慮肥料溶解過程的均勻施肥方法,用于指導(dǎo)壓差施肥罐實(shí)現(xiàn)均勻施肥。此時(shí)只需設(shè)定適宜的主管道流量,便可實(shí)現(xiàn)恒定施肥流量和最優(yōu)濃度的均勻施肥過程。但通常情況下,罐內(nèi)肥液濃度無法持續(xù)飽和,肥料的溶解也會(huì)隨時(shí)間不斷變化,考慮這些因素的均勻施肥方法有待進(jìn)一步研究。
[1]Kang S Z, Hao X M, Du T S, et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice[J]. Agricultural Water Management, 2017, 179: 5-17.
[2]鐘茜,巨曉棠,張福鎖. 華北平原冬小麥/夏玉米輪作體系對(duì)氮素環(huán)境承受力分析[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2006,12(3):285-293. Zhong Xi, Ju Xiaotang, Zhang Fusuo. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 285-293. (in Chinese with English abstract)
[3]Bai X G, Wang Y N, Huo X X, et al. Assessing fertilizer use efficiency and its determinants for apple production in China[J]. Ecological Indicators, 2019, 104: 268-278.
[4]Zhang X, Bol R, Rahn C, et al. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China[J]. Science of the Total Environment, 2017, 596-597: 61-68.
[5]Kaplan M, Kara K, Unlukara A, et al. Water deficit and nitrogen affects yield and feed value of sorghum sudangrass silage[J]. Agricultural Water Management, 2019, 218: 30-36.
[6]孟一斌,李久生,李蓓. 微灌系統(tǒng)壓差式施肥罐施肥性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):41-45. Meng Yibin, Li Jiusheng, Li Bei. Fertilization performance of the pressure differential tank in micro-irrigation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 41-45. (in Chinese with English abstract)
[7]汪小珊,嚴(yán)海軍,周凌九,等. SSQ系列射流施肥器水力性能的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):31-38. Wang Xiaoshan, Yan Haijun, Zhou Lingjiu, et al. Experimental research of hydraulic performance on jet fertilizer applicator of SSQ series[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 31-38. (in Chinese with English abstract)
[8]李久生,杜珍華,栗巖峰. 地下滴灌系統(tǒng)施肥灌溉均勻性的田間試驗(yàn)評(píng)估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):83-87. Li Jiusheng, Du Zhenhua, Li Yanfeng. Field evaluation of fertigation uniformity for subsurface drip irrigation systems[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 83-87. (in Chinese with English abstract)
[9]李建明,于雪梅,王雪威,等. 基于產(chǎn)量品質(zhì)和水肥利用效率西瓜滴灌水肥制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):75-83. Li Jianming, Yu Xuemei, Wang Xuewei, et al. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 75-83. (in Chinese with English abstract)
[10]Li J S. Increasing crop productivity in an eco-friendly manner by improving sprinkler and micro-irrigation design and management: A review of 20 years’ research at the IWHR, China[J]. Irrigation and Drainage, 2017, 67(1): 97-112.
[11]封俊,沈雪民,劉春和,等. 壓差式噴灌施肥裝置的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1991,7(2):107-113. Feng Jun, Shen Xuemin, Liu Chunhe, et al. A study on the pressure differential fertilizer injection unit in sprinkler irrigation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1991, 7(2): 107-113. (in Chinese with English abstract)
[12]李凱,毛罕平,李百軍. 混藥混肥裝置控制性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2003,34(1):50-53. Li Kai, Mao Hanping, Li Baijun. Analysis on control performance of various pesticide or fertilizer mixers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 50-53. (in Chinese with English abstract)
[13]Li J S, Meng Y B, Liu Y. Hydraulic performance of differential pressure tanks for fertigation[J]. Transaction of the ASABE, 2006, 49(6): 1815-1822.
[14]鄧蘭生,張承林,郭彥彪. 壓差施肥罐施肥時(shí)間解析[J]. 節(jié)水灌溉,2007(3):26-28,31. Deng Lansheng, Zhang Chenglin, Guo Yanbiao. Analysis of fertilization time in differential pressure tank[J]. Water Saving Irrigation, 2007(3): 26-28, 31. (in Chinese with English abstract)
[15]韓啟彪. 設(shè)施農(nóng)業(yè)灌溉施肥器性能試驗(yàn)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2008. Han Qibiao. Experimental Study on Performances of Fertigation Injectors in Agricultural Facilities[D]. Beijing: China Agricultural University, 2008. (in Chinese with English abstract)
[16]陳劍,呂新. 滴灌棉田壓差式施肥罐注肥均勻度研究與分析[J]. 節(jié)水灌溉,2011(1):62-64. Chen Jian, Lü Xin. Study on fertilization uniformity of pressure differential tank in drip irrigation cotton field[J]. Water Saving Irrigation, 2011(1): 62-64. (in Chinese with English abstract)
[17]范軍亮,張富倉,吳立峰,等. 滴灌壓差施肥系統(tǒng)灌水與施肥均勻性綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):96-101. Fan Junliang, Zhang Fucang, Wu Lifeng, et al. Field evaluation of fertigation uniformity in drip irrigation system with pressure differential tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 96-101. (in Chinese with English abstract)
[18]Fan J L, Wu L F, Zhang F C, et al. Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout[J]. Irrigation and Drainage, 2017, 66(4): 520-529.
[19]楊欣. 滴灌系統(tǒng)壓差式施肥裝置性能及施肥均勻性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Yang Xin. Study on Performance and Fertilizer Uniformity of Differential Pressure Fertilizer Apparatus in Drip Irrigation System[D]. Yangling: Northwest Agricultural and Forest University, 2017. (in Chinese with English abstract)
[20]楊欣,王文娥,胡笑濤,等. 滴灌系統(tǒng)壓差式施肥罐施肥性能研究[J]. 節(jié)水灌溉,2017(10):79-83. Yang Xin, Wang Wene, Hu Xiaotao, et al. Study on fertilization performance of drip irrigation system with pressure differential tank[J]. Water Saving Irrigation, 2017(10): 79-83. (in Chinese with English abstract)
[21]韓啟彪,李浩,馮紹元,等. CFD模擬在壓差施肥罐濃度衰減研究中的應(yīng)用初探[J]. 灌溉排水學(xué)報(bào),2015,34(12):81-84. Han Qibiao, Li Hao, Feng Shaoyuan, et al. Preliminary application of CFD simulation technology to concentration decay law research of pressure-fertilizer tank[J]. Journal of Irrigation and Drainage, 2015, 34(12): 81-84. (in Chinese with English abstract)
[22]胡昕宇,嚴(yán)海軍,陳鑫. 基于壓差式施肥罐的均勻施肥方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):119-127. Hu Xinyu, Yan Haijun, Chen Xin. Uniform fertilization method based on differential pressure tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 119-127. (in Chinese with English abstract)
[23]Chau K W, Jiang Y W. Three-dimensional pollutant transport model for the Pearl River Estuary[J]. Water Research, 2002, 36(8): 2029-2039.
[24]Dokoumetzidis A, Papadopoulou V, Macheras P. Analysis of dissolution data using modified versions of Noyes-Whitney equation and the Weibull function[J]. Pharmaceutical Research, 2006, 23(2): 256-261.
[25]Rindt D W, Blouin G M, Getsinger J G. Sulfur coating on nitrogen fertilizer to reduce dissolution rate[J]. Journal of Agricultural and Food Chemistry, 1968, 16(5): 773-778.
[26]童菊秀,楊金忠,暴入超. 土壤中溶解性溶質(zhì)流失特征試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):77-82. Tong Juxiu, Yang Jinzhong, Bao Ruchao. Characteristics of soluble chemical loss in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 77-82. (in Chinese with English abstract)
[27]Burt C, Connor K O, Ruehr T. Fertigation[M]. San Luis Obispo: Irrigation Training and Research Center, California Polytechnic State University, 1998.
[28]Pan Y, Chamecki M, Isard S A. Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer[J]. Journal of Fluid Mechanics, 2014, 753: 499-534.
[29]劉艷芳,宋玉玲,郭龍,等. 結(jié)合高光譜信息的土壤有機(jī)碳密度地統(tǒng)計(jì)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):183-191. Liu Yanfang, Song Yuling, Guo Long, et al. Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 183-191. (in Chinese with English abstract)
[30]Gleicher S C, Chamecki M, Isard S A, et al. Interpreting three-dimensional spore concentration measurements and escape fraction in a crop canopy using a coupled Eulerian-Lagrangian stochastic model[J]. Agricultural and Forest Meteorology, 2014, 194: 118-131.
Calculation method of fertilizer concentration at outlet based on differential pressure tank considering fertilizer dissolution
Hu Xinyu, Yan Haijun, Chen Xin※
(1.,,100083,; 2.,,100083,)
Differential pressure tank is widely used in the fertigation technology in China because of its low cost, simple and convenient. In this study, a theoretical formula was derived for the fertilizer concentration at outlet based on differential pressure tank considering fertilizer dissolution. The continuity equation for fertilizer transportation and diffusion with source term was used to obtain the differential equation for the fertilizer concentration at outlet. The influence of fertilizer dissolution on the fertilizer concentration at outlet was described by parameters considering the actual process of fertilizer dissolution, and the theoretical formula was obtained for the fertilizer concentration at outlet. In the theoretical formula, one parameter represented the initial dissolution rate of fertilizer in the tank, and the other parameter described the decreasing speed of fertilizer dissolution rate in the tank. When the parameters in the theoretical formula took a specific value, the theoretical formula could be transformed into the classical exponential formula of fertilizer concentration. The variations of source term and fertilizer concentration at outlet with time were further discussed when the parameters took different values. Compared with the experimental data, the theoretical formula considering fertilizer dissolution was suitable for different fertilization experiments and fertilization conditions, and achieved more accurate prediction for fertilizer concentration at outlet than the classical exponential formula and the experimental regression formulas. The classical exponential formula was obviously underestimated for the fertilization experiments with obvious fertilizer dissolution, and the experimental regression formulas were also overestimated or underestimated to some extent for some experimental results. The average values of mean absolute error, root mean square error, geometric mean bias, geometric variance and the fraction of computations within two times the deviation for the theoretical formula were 0.04, 0.06, 0.89, 1.19 and 88.26%, respectively, which verified the accuracy of the theoretical formula for the prediction of fertilizer concentration at outlet. For the classical exponential formula and the experimental regression formulas, the average values of geometric mean bias and geometric variance deviated from the reasonable range, and the deviation for some experiments was very distinct. The average mean absolute error of the theoretical formula for typical cases was 0.020. The mean absolute errors for the classical exponential formula and the experimental regression formulas were 0.102, 0.127 and 0.124, which were 5.1, 6.4 and 6.2 times of the theoretical formula. On this basis, the uniform fertilization method under differential pressure tank was further illustrated considering fertilizer dissolution when the fertilizer concentration in the tank was saturated continuously and the sufficient fertilizer was supplied for long-term dissolution and fertilization. The fertilizer amount dissolved in the tank was always equal to the fertilizer amount flowing out of the tank in this particular case. At this point, the uniform fertilization of constant fertilization flux and optimal fertilizer concentration can be realized by setting an appropriate main pipe flux. The theoretical formula considering fertilizer dissolution calculates the fertilizer concentration at outlet precisely, and provides a feasible scheme for uniform fertilization under differential pressure tank.
fertilizers; dissolution; fertigation; differential pressure tank; concentration at outlet; theoretical formula; uniform fertilization
胡昕宇,嚴(yán)海軍,陳鑫. 考慮肥料溶解的壓差施肥罐出口肥液濃度計(jì)算方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):99-106.doi:10.11975/j.issn.1002-6819.2020.24.012 http://www.tcsae.org
Hu Xinyu, Yan Haijun, Chen Xin. Calculation method of fertilizer concentration at outlet based on differential pressure tank considering fertilizer dissolution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 99-106. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.012 http://www.tcsae.org
2020-08-10
2020-11-11
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0201502);國家自然科學(xué)基金資助項(xiàng)目(51836010、41961144014)
胡昕宇,博士生,主要從事灌溉施肥設(shè)備與水肥流動(dòng)研究。Email:huxinyu@cau.edu.cn
陳鑫,研究員,博士生導(dǎo)師,主要從事灌溉施肥技術(shù)與兩相流動(dòng)研究。Email:chenx@cau.edu.cn
10.11975/j.issn.1002-6819.2020.24.012
S147.3
A
1002-6819(2020)-24-0099-08