999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三元實二次型的分類

2020-03-08 14:19:49劉歡魏姣
關(guān)鍵詞:分類

劉歡 魏姣

【摘要】三元實二次型的規(guī)范形是由二次型唯一確定的,根據(jù)規(guī)范形的類型對三元實二次型進行一個全面的分類.化二次型為規(guī)范形的方法有很多種,比如,非線性替換法、合同變換法.本文介紹一種特征值判別法,根據(jù)二次型矩陣的特征值的正負(fù)性確定其規(guī)范形.

【關(guān)鍵詞】特征值;實二次型;規(guī)范形;分類;

【基金項目】國家自然科學(xué)基金(11801525).

二次型f(X)=X′AX是線性代數(shù)中的重要內(nèi)容,在研究二次型時,首先要研究其標(biāo)準(zhǔn)形和規(guī)范形.眾所周知,化實二次型為規(guī)范形的方法有很多種,比如,非退化線性替換法、合同變換法、配方法[1,2]等等.由于三元實二次型在線性代數(shù)教材中出現(xiàn)的頻率高,另外二次曲面與三元二次型聯(lián)系緊密,因此,研究三元實二次型的分類顯得尤為重要.本文利用特征值判別法研究三元實二次型的分類,即根據(jù)二次型矩陣的特征值的正負(fù)性確定其規(guī)范形.

定理1?任意一個實二次型f(X)=X′AX都可以經(jīng)過某一個正交線性替換X=TY化為標(biāo)準(zhǔn)形f(X)=λ1y21+λ2y22+…+λny2n,其中λ1,λ2,…,λn恰為A的n個實數(shù)特征值.

推論2?如果A的特征值中有p個為正,q個為負(fù),那么實二次型f(X)=X′AX可以經(jīng)過一個非退化線性替換化成規(guī)范形f(X)=z21+z22+…+z2p-z2p+1-z2p+2-…-z2p+q.

證明?不妨設(shè)A的特征值λ1,λ2,…,λp為正,λp+1,λp+2,…,λp+q為負(fù).令

Y=diag1λ1,…,1λp,1-λp+1,…,1-λp+q,1,…,1ZT1Z,做非退化線性替換X=TT1Z,實二次型f(X)=X′AX化為規(guī)范形f(X)=z21+z22+…+z2p-z2p+1-z2p+2-…-z2p+q.

例1?利用特征值法求實二次型f(x1,x2,x3)=x21-4x1x2+4x1x3-2x22+8x2x3-2x23的規(guī)范形.

解?二次型f(x1,x2,x3)的矩陣為

A=1-22-2-2424-2,其特征多項式為

|λE-A|=λ-12-22λ+2-4-2-4λ+2=(λ-2)2(λ+7),

則A的特征值為λ1=λ2=2,λ3=-3,進而可知二次型f(x1,x2,x3)在某一非退化線性替換X=TY下化為規(guī)范形為f=y21+y22-y23.

實對稱矩陣的特征值肯定是存在的,而且?guī)缀沃財?shù)等于代數(shù)重數(shù),但是對某些實對稱矩陣來說,其特征值求解是非常困難的,比如,下面的問題.

例2?求實二次型f(x1,x2,x3)=3x21+x22+5x23+4x1x2-8x1x3-4x2x3的規(guī)范形.

分析?二次型的矩陣A=32-421-2-4-25,其特征多項式為|λE-A|=λ3-9λ2-λ+1.該三次多項式在實數(shù)域分解因式是非常困難的,從而無法給出特征值的精確值.所幸的是,確定規(guī)范形只需要特征值的正負(fù)個數(shù),不必求精確值.

解?假設(shè)實對稱矩陣A的三個特征值為λ1,λ2,λ3,則

λ1λ2λ3=-1,?λ1+λ2+λ3=9.

由λ1λ2λ3=-1可知三個特征值必為兩正一負(fù),否則三個都為負(fù),這與λ1+λ2+λ3=9矛盾.從而可知該二次型在經(jīng)過某一個非退化的線性替換X=TY化為規(guī)范形f=y21+y22-y23.

根據(jù)上述問題,將其結(jié)論推廣,從而得到下面關(guān)于三元實二次型分類的一個定理.

定理3?任意一個三元實二次型f(X)=X′AX,其中X=(x1,x2,x3)′,A為二次型的矩陣,其特征多項式為|λE-A|=λ3-tr(A)λ2+ξ(A)λ-|A|,其中tr(A)為A的跡,ξ(A)為A的所有二階主子式之和.

(a)如果|A|>0,tr(A)<0,則規(guī)范形為f=y21-y22-y23;

(b)如果|A|<0,tr(A)>0,則規(guī)范形為f=y21+y22-y23;

(c)如果|A|>0,tr(A)>0,且

(1)ξ(A)>0,則規(guī)范形為f=y21+y22+y23;

(2)ξ(A)<0,則規(guī)范形為f=y21-y22-y23;

(d)如果|A|<0,tr(A)<0,且

(1)ξ(A)>0,則規(guī)范形為f=-y21-y22-y23;

(2)ξ(A)<0,則規(guī)范形為f=y21+y22-y23;

(e)如果|A|=0,

|λE-A|=λλ-tr(A)+tr2(A)-4ξ(A)2·λ-tr(A)-tr2(A)-4ξ(A)2,

可以算出特征值的精確值,從而得到其規(guī)范形.

證明?情形(a)和(b)的證明思路和例2類似,情形(e)根據(jù)一元二次方程求根公式即證.由于情形(c)和(d)類似,下面只需證明情形(c).

假設(shè)A的特征值為λ1,λ2,λ3,由于|A|>0,則λ1,λ2,λ3三個為正或者兩負(fù)一正.事實上,tr(A)=λ1+λ2+λ3,ξ(A)=λ1λ2+λ1λ3+λ2λ3.

(1)如果ξ(A)<0,則λ1,λ2,λ3必是一正兩負(fù),否則λ1,λ2,λ3三個為正,與ξ(A)<0矛盾,即證.

(2)如果tr(A)>0,ξ(A)>0,則λ1,λ2,λ3三個為正,否則λ1,λ2,λ3一正兩負(fù).不妨設(shè)λ1>0,λ2<0,λ3<0,由于λ1+λ2+λ3>0可知λ1>-λ2-λ3>-λ2,進而可知λ1λ2+λ1λ3+λ2λ3<-λ2(λ2+λ3)+λ2λ3<-λ22<0,與ξ(A)>0矛盾,即證.

【參考文獻】

[1]王長群,李夢如.線性代數(shù):第二版[M].北京:高等教育出版社,2012.

[2]北京大學(xué)數(shù)學(xué)系前代數(shù)小組.高等代數(shù):第五版[M].北京:高等教育出版社,2019.

猜你喜歡
分類
2021年本刊分類總目錄
分類算一算
垃圾分類的困惑你有嗎
大眾健康(2021年6期)2021-06-08 19:30:06
星星的分類
我給資源分分類
垃圾分類,你準(zhǔn)備好了嗎
分類討論求坐標(biāo)
數(shù)據(jù)分析中的分類討論
按需分類
教你一招:數(shù)的分類
主站蜘蛛池模板: 国产精品3p视频| 亚洲国产一区在线观看| 草逼视频国产| 亚洲无线国产观看| 亚洲男人天堂2020| 四虎永久在线| 国产主播在线一区| 久久中文字幕av不卡一区二区| 亚洲区欧美区| 国产精品浪潮Av| 色丁丁毛片在线观看| 精品国产污污免费网站| 欧美另类精品一区二区三区 | 亚洲综合香蕉| 久久九九热视频| 亚洲成人高清在线观看| 国产成人综合久久精品下载| 免费看一级毛片波多结衣| 日韩AV手机在线观看蜜芽| 免费看的一级毛片| 五月婷婷亚洲综合| 精品国产一区二区三区在线观看 | 91成人免费观看| 久青草免费在线视频| 免费高清自慰一区二区三区| 亚洲激情区| 永久天堂网Av| 精品国产aⅴ一区二区三区| 2021最新国产精品网站| 91麻豆国产视频| 91黄色在线观看| 男人天堂亚洲天堂| 国产黄色片在线看| 亚洲三级视频在线观看| 亚洲天堂免费在线视频| 一本大道无码高清| 免费播放毛片| 波多野结衣第一页| 她的性爱视频| 制服丝袜在线视频香蕉| 精品無碼一區在線觀看 | 亚洲欧美在线看片AI| 国产精品va| 91久久夜色精品| 爆乳熟妇一区二区三区| 国产精品三级专区| 伊人无码视屏| 成人一区专区在线观看| 福利在线不卡| 久久semm亚洲国产| 国产免费福利网站| 欧美午夜在线视频| 国产理论一区| 视频二区欧美| 在线看片中文字幕| 国产经典在线观看一区| 中文纯内无码H| 久久国产精品影院| 亚洲中文制服丝袜欧美精品| 久久一色本道亚洲| 一边摸一边做爽的视频17国产| 国产免费羞羞视频| 99精品免费欧美成人小视频| 99精品欧美一区| 丰满的少妇人妻无码区| 国产精品冒白浆免费视频| 成人精品免费视频| 久久久久久久97| lhav亚洲精品| 91在线国内在线播放老师| 色综合网址| 欧美日本一区二区三区免费| 伊人色综合久久天天| 一区二区欧美日韩高清免费| 天堂在线亚洲| 亚洲日韩高清在线亚洲专区| 亚洲中文字幕国产av| 国产精品香蕉| 免费A∨中文乱码专区| 中文字幕不卡免费高清视频| 天堂亚洲网| 国产青青草视频|