劉 權
(蘇州市陸慕高級中學,江蘇 蘇州 215131)
《中國學生發展核心素養》報告中重點強調了創新能力、批判性思維、公民素養、合作與交流能力、自主發展能力、信息素養這6種核心素養.其中創新能力是6種核心素養的核心,而批判性思維又是創新能力的前提.[1]
批判性思維最早源于杜威提出的反省思維,主要指延遲判斷.20世紀30年代格雷瑟的“批判性思維”包括:“愿意對自己接觸的問題和對象進行縝密思考的態度,邏輯推理方法的知識,運用這些方法的技能.”恩尼斯給出了批判性思維更直觀的定義:“批判性思維是指為決定相信什么或做什么進行的合理的、反省的思考,通過那些理性反思以決定相信什么或做什么.”[2]
批判性思維是一種高階思維素養.思維的批判性是指思維中嚴格估計思維材料和檢查思維過程,善于獨立思考,不受暗示干擾,善于發現問題,提出質疑,進行爭論,不斷分析解決問題所依據的條件,反復檢查已擬定的假設,計劃和方案;善于客觀地考慮正反兩方面的論據;善于明辨是非曲直,不人云亦云,盲從附和.[3]
古希臘哲人普羅塔戈的名言:“大腦不是一個要被填滿的容器,而是一個需要被點燃的火把”,而“問題”就是點燃學生思維的火種.世界著名的教育專家李·舒爾曼提到:“原理是強有力的,但案例是令人難忘的”.培養學生批判性思維的問題需要教師精選案例或事件來表現.
對于學生而言,能夠使學習增值的事件就是關鍵事件.關鍵事件是批判性思維培養的有效資源.它可以是一段物理學史的介紹、一個物理概念的建立過程、一個物理規律的發現過程、一組模型的生成過程.
(1) 物理學史激活批判性思維.
物理學史上熟知的物理學家無一不具有批判性科學精神.在追求真理過程中,他們常常向權威挑戰,提出質疑,表達創造性的觀點,為科學的發展和進步做出了卓越貢獻.
例1.亞里斯多德認為力是維持運動的原因,伽利略則提出質疑,指出物體在沒有受到外力時,可保持勻速直線運動狀態,在此基礎上,經牛頓等人的研究,得出牛頓運動定律.又如開普勒相信哥白尼學說,所以開始時他按行星繞太陽做勻速圓周運動的觀點來思考問題.在他對火星軌道的研究中,70余次嘗試所得的結果都與第谷的觀測數據有至少8分的角度偏差,他從對第谷數據的深信不疑到開始質疑,反復修正,最后發表了行星運動三大定律.再如很多物理學家投身于“磁生電的研究”,安培、科拉頓、法拉第等人起初很長時間都認為“靜態”的電流能產生磁場,那么“靜態”的磁場也會產生電流.法拉第用了10多年做了大量的實驗,均以失敗告終.法拉第逐漸對那種共識產生質疑,最終總結出了電磁感應定律.
(2) 物理規律激活批判性思維.

圖1
例2.探究機械能守恒條件是“機械能守恒定律”這節課的核心內容.如圖1所示,小球從粗糙曲面滑下,研究小球從A位置到B位置的過程,結合WG+Wf=EkB-EkA和WG=EpA-EpB討論在什么條件下滿足EkA+EpA=EkB+EpB,即機械能守恒?學習小組爭論的觀點有: ① 小球只受重力; ② 受重力,也可以受其他力; ③ 只有重力做功; ④ 有重力做功,也可以有其他力做功.學生的自評和互評凸顯了批判性思維.
(3) 物理模型激活批判性思維.
相似模型間的“求異”本身就是一種批判.學生只有運用批判性思維,才能辨別模型的異同,達到深刻的理解.

圖2
例3.圖2是輕繩和輕桿模型間的“求異”,小球分別在輕繩和輕桿的牽引下,都向右做加速度為a的勻加速直線運動,輕繩和輕桿與豎直方向分別成45°和30°.分別求輕繩和輕桿對小球的作用力大小?
解析:學生按照輕繩模型來“同化”輕桿模型,根據水平方向Fsin30°=ma得到答案.
批判性思維體現:學生通過豎直方向關系Fcos30°=mg發現矛盾,提出質疑,修正批判得到:輕繩提供的彈力一定沿著繩子方向,輕桿提供的彈力不一定沿著桿子方向
例4.圖3是曲面模型和斜面模型間的“求異”,物體分別從粗糙曲面和粗糙斜面靜止滑下,曲面和斜面的兩直角邊長度,動摩擦因數都相同,分別為R、μ,求物體從A到B的過程中克服摩擦力做功?

圖3

圖4
解析:學生按照斜面模型來“同化”曲面模型,把AB圓弧分成許多很短的間隔,由于每一段都很小,因而都可以近似地看做一段傾斜的直線.如圖4所示,AA1是其中的某一小段,滑塊在這一小段滑動過程中,滑動摩擦力f=mgμcosθ,滑動摩擦力做的功為Wf=-mgμLcosθ=-mgμx(x是這一小段在水平方向的投影),所以物塊通過整個曲面時摩擦力所做的功,等于摩擦力在每一小段上所做的功的代數和,曲面在水平方向的投影為R,即物塊在AB段克服摩擦力做功為mgμR.
批判性思維體現:學生提出質疑,物塊在曲面上運動,需要提供向心力,曲面給物塊的彈力F>mgcosθ,即f>mgμcosθ.所以物塊在曲面上運動受到的摩擦力應該大于同位置物塊在斜面上受到的摩擦力,因而物塊在AB段克服摩擦力做功應大于mgμR.
最適合思維的教學,是以思維為基礎的問答策略,也就是說,教師教學問題的設計是培養學生高階思維最有效的手段.在物理教學中,培養高階思維應該圍繞物理概念、規律為學習者設計開放的、挑戰性的、能引起多種解決途徑的問題,給學生提供多方位思考問題的機會.[4]
吳加澍提出實驗教學的“三問”,讓學生參與物理實驗的設計過程,這個實驗應該怎樣做——知其然;這個實驗為什么這樣做?——知其所以然;這個實驗還可以怎樣做?——知其所盡然.
例5.小球以初速度v距地面一定高度做豎直上拋運動,不計阻力,求小球ts后的位移?(小球未落地)
解析:大部分學生先求出小球運動到最高位置的時間,然后通過討論t與它的關系,建立表達式.
批判性思維體現:教師強調解題方法不確定性,引導學生分析小球運動的全過程,學生發現小球做勻變速直線運動,加速度為重力加速度,果斷運用位移公式寫出表達式.
例6.“驗證機械能守恒定律”這節課要求學生通過實驗來驗證機械能守恒定律.
方案:大部分教師遵循教材本意,采用安排好的實驗情景(物體自由下落)展開實驗驗證.
批判性思維體現:由于學生能夠建立很多機械能守恒的情景(單個物體,兩個物體),教師將驗證性實驗改為探究性實驗.教師通過充分預設,將一些需要用到的器材留給學生,讓學生根據手邊的器材進行設計實驗.學生建立了4種探究情境: ① 物體做豎直上拋運動; ② 物體做單擺運動; ③ 物體做平拋運動; ④ 連接體運動(類似牛頓第二定律實驗).
差異性事件表現出的現象會超出學生預期,引發認知沖突,使學生的認知心理失衡,繼而產生解決這種認知沖突而獲得心理平衡的動機.
差異性實驗是差異性事件的一種呈現方式,它是指實驗現象或結果是人們意想不到的,違反直覺的,與“常識”有較大差異的實驗.[5]

圖5
例7.如圖5所示,一細線一端固定于傾角為45°的光滑斜面體的頂端P處,細線的另一端拴一質量為m的小球.求當斜面體以a=2g的加速度向左運動時,求斜面對小球的支持力大小?
批判性思維體現:學生的預期是支持力大小為正值,而答案卻超出預期.這個鮮明的差異性刺激著學生做批判性的反思.如果小球在斜面上,所有的操作都正確,答案應該沒問題,除非小球不在斜面上,脫離了斜面?學生運用臨界法,推導出當斜面體以a=g的加速度向左運動時,小球處在臨界狀態(在斜面上,但恰好與斜面不擠壓),所以當a>g時,小球確實脫離了斜面.

圖6
例8.如圖6所示,a、b都是很輕的鋁環,a環是閉合的,b環是不閉合的.a、b環都固定在一根可以繞O點自由轉動的水平細桿上,此時整個裝置靜止,現在使磁體一端靠近b環,請利用電磁感應的相關知識判斷b環會出現什么現象?
實驗現象:磁體靠近b環時,b環遠離磁體.
批判性思維體現:學生的預期是由于b環不閉合,當磁體靠近時,b環內不會出現感應電流,b環仍靜止不動,而實驗現象卻超出預期.這個鮮明的差異性刺激著學生做批判性的反思:這種實驗現象應該是在鋁環閉合的時候出現的,鋁環不閉合的情況下,居然也出現了這種現象,除非鋁環中出現了感應電流?學生檢索出一種感應電流叫渦流,它在金屬中產生.由于使用了強磁鐵,在鋁環中產生了渦流.
按照辯證唯物主義的美學觀點,美的本質是合乎規律性與合乎目的性的統一.物理學中蘊含的美主要有“對稱、簡潔、和諧、多樣統一”.臻美的方法是指在研究物理問題過程中,按照美學規律對尚不完美的東西進行加工、修改以致重構的思維方法.這一方法最大特點是把對美的追求放在思維的首位,通過對物理概念、物理規律、物理模型等審美處理,探索解決物理問題的新方向.
(1) “對稱美”喚醒批判性思維.

圖7
例9.如圖7所示,質量為m,帶電荷量為+q的小球用一長度為L的絕緣細線懸于O點,周圍有一水平向右的勻強電場E,小球靜止在如圖位置(細線與豎直方向的夾角均為θ<45°),如果把小球拉回到豎直位置,再把小球無初速度釋放,問小球擺離豎直位置的最大角度?
解析:學生根據平衡的知識和動能定理,求出最大角度為2θ.
批判性思維體現:學生發現單擺運動的對稱美,利用單擺最大偏移位置的對稱性,很快得到小球擺離豎直位置的最大角度為2θ.
(2) “簡潔美”喚醒批判性思維.
例10.如圖8所示,有一輕繩系一個小球懸于O點.將球拉至A位置,繩水平繃緊.無初速釋放,問小球下擺至B位置過程中,在什么位置重力有最大功率?(已知球的質量為m,繩的長度為L,不計空氣阻力)

圖8

圖9
解析:選取球下擺過程中的一般狀態C(如圖9),根據機械能守恒定律和功率公式得到
P2=2m2g3Lsinθcos2θ.
令f=sinθcos2θ,兩邊平方得

批判性思維體現:學生發現運動過程的簡潔美,小球下擺過程中速度一直變大,根據向心力公式,得知繩的拉力一直變大,拉力在豎直方向的分力Fy也在變大.結合小球在B位置豎直方向的速度為0這個特點,分析出小球在豎直方向上的運動是一個先加速后減速的過程.而由于重力的功率P=mgvy,所以當Fy=mg時vy最大,即P最大.列出相應的表達式為
Fy=Fsinθ=mg.
(3) “守恒美”喚醒批判性思維.
例11.A,B兩個小球在光滑的水平面上沿同一直線,同一方向運動,A球速度為5 m/s,B球速度為3 m/s,當A球追上B球時發生完全彈性碰撞,則碰撞后A,B兩球速度的可能值
(A) 3 m/s,5 m/s. (B) 3 m/s,6 m/s.
(C) 2 m/s,6 m/s. (D) -2 m/s,1 m/s.
解析:由于兩個小球質量未知,學生必須結合碰撞前后速度,動量守恒表達式和能量守恒表達式來計算小球質量,如果有解,說明正確,無解說明錯誤.于是學生需要依次驗算.
批判性思維體現:學生緊抓完全彈性碰撞中的守恒美,發現完全彈性碰撞過程中,小球相對速度大小也不變,[6]根據小球碰撞前相對速度大小為2 m/s,很快選出(A)選項.
指導學生在學習活動中意義建構,形成良好系統的認知結構.因為良好的認知結構有利于記憶理解、檢索加工、提取應用,為開展有效思維活動創造合適的條件.系統的認知結構能夠對物理知識、物理思想方法和基本技能進行有機整合,提高批判思維的可靠性.
顯化批判思維培養優于滲透培養.教師應該有意識地顯化批判性思維培養,要在了解學生的基礎上,積極創造機會,設計一些針對性的問題,植入批判性元素,強化批判性思維的應用.無論學生批判得錯與對,教師都應及時反饋對學生運用批判性思維的肯定,呵護學生“愿批判”、“堅持批判”的情感.教師也需要學習一些批判性思維的專門知識,[1]依托專業理論,提高培養效果.
思維品質包括深刻性、靈活性、批判性、敏捷性和創造性.批判性只是思維特性的一部分,批判性思維培養不能獨立于更不能排斥其他品質的培養,相反其他思維品質很大程度上能促進批判性思維的發生頻率和提高批判的準確性.建議教師構建“思維型”課堂,這種課堂強調以誘發思維動機為特征的教學導入、以引發思維動力為特征的教學過程、以思維監控為特征的教學反思和以抽象概括為特征的應用遷移.[7]“思維型”課堂的核心就是培養學生思維習慣,只有學生積極思維,批判性思維培養才有可能.