朱繼英,鐘 慧,陸 玉,張 岐
接種物耐酸馴化對菌糠厭氧干發酵產氣的影響
朱繼英,鐘 慧,陸 玉,張 岐
(山東理工大學農業工程與食品科學學院,淄博 255000)
為了提高厭氧干發酵體系運行穩定性,使中間產物酸及時轉化為甲烷,避免出現酸抑制現象,該研究采用逐步提高乙酸濃度降低pH值的方式對接種物進行馴化,得到了在乙酸濃度10 200 mg/kg、pH值6.0條件下仍能快速產氣的耐酸接種物,并以易水解酸化的菌糠為原料進行了厭氧干發酵試驗。結果表明,馴化過程中產甲烷古菌類群的多樣性下降,乙酸營養型甲烷八疊球菌豐度大幅提高,乙酸轉化率和甲烷濃度逐漸提高;耐酸接種物的脫氫酶活性下降,輔酶420和纖維素酶活性升高;添加耐酸接種物可以加快菌糠厭氧干發酵啟動速度,避免酸抑制現象的發生;接種物含有75%耐酸接種物的試驗組甲烷產量提高了56.1%。該研究成果能夠為有效解決厭氧干發酵過程酸抑制現象提供一定的理論指導。
甲烷;發酵;生物質
厭氧干發酵是指利用有機固體廢棄物在干物質濃度高達20%~40%情況下生產沼氣的發酵技術。與傳統濕發酵相比,該技術具有原料適應性廣泛,需水量低,耗能少,發酵殘余物易處理等優點[1-4]。然而,由于干發酵有機質濃度高、含水量低,體系內能質傳遞過程受阻,易造成發酵不均勻、甲烷轉化率低,中間產物揮發性脂肪酸(volatile fatty acids,VFAs)在局部積累的現象[5]。當VFAs濃度超過抑制閾時會影響產甲烷菌的活性,使發酵過程失衡,產氣量降低,甚至因“過度酸化”而失敗。乙酸是厭氧發酵過程中最重要的中間產物,約70%甲烷產自于乙酸[6],其濃度直接影響體系中產甲烷菌的活性和甲烷的產量。有研究表明,在兩相厭氧發酵工藝中,酸化相的乙酸抑制閾明顯高于產甲烷相[7],說明長期的高濃度VFA處理會得到具有良好酸耐受性的產甲烷菌群。Xu等[8]以餐廚垃圾為底物的厭氧發酵結果表明,乙酸是甲烷化階段主要的抑制劑,高有機負荷下厭氧體系在發酵初始階段的乙酸濃度也高,抑制了乙酸營養型產甲烷途徑,但是某種未培養的甲烷鬃毛菌可以利用乙酸產生甲烷,并且在高乙酸濃度下生長良好。
菌糠為蘑菇采收后的廢棄物,具有較豐富的營養物質[9]。蘑菇生長過程中,培養料中的有機質發生了巨大的變化,粗纖維和木質素被大量降解,粗蛋白和粗脂肪含量升高,可降解性增強,是沼氣生產的良好原料[10]。但發酵料快速降解產生的VFAs如果不能被及時地轉化為甲烷就容易在厭氧發酵體系中積累而導致酸抑制,因此菌糠較高的降解性對于厭氧干發酵的穩定性可能有消極的影響[11-12]。
為了使厭氧干發酵體系中產生的VFAs及時地轉化為甲烷,提高發酵運行穩定性,本文通過耐酸馴化,改善接種物中的微生物群落結構和豐度,并以菌糠為原料,考察了耐酸接種物對厭氧干發酵產氣特性的影響。
接種物取自淄博市淄川區楊寨鎮秸稈沼氣站(主要發酵原料為玉米秸稈和牲畜糞便),為37 ℃下運行良好的液態沼氣發酵后的殘余物。菌糠取自淄博市淄川區楊寨鎮的平菇養殖戶,經過烘干使得水分含量低于10%,試驗前研磨過5 mm篩。接種物和菌糠的特性如表1所示。

表1 接種物和菌糠特性
1.2.1 接種物馴化方法
向25 L紅泥塑料發酵袋中加入6 L的原始接種物(pH值為7.7),通過控制乙酸添加量使接種物pH值按梯度降低到6.0,整個馴化過程基于pH值分為4個階段:7.2,6.7,6.2和6.0。馴化過程中,每天測定接種物實際pH值、產氣量、甲烷含量,然后用乙酸調整至目標pH值,并記錄乙酸溶液添加量。每個階段的馴化直至在該pH值條件下接種物能快速穩定產氣為止。4個馴化階段分別于第12、22、32和40天結束,每個階段結束時取樣測定脫氫酶、纖維素酶和輔酶420的活性。整個馴化過程持續40 d,在37 ℃的恒溫培養箱中進行。馴化最終階段接種物產氣量穩定,并且甲烷含量在50%以上,接種物中剩余的乙酸通過在培養箱中溫育至無沼氣產生來消除。
1.2.2 厭氧干發酵方法
厭氧干發酵采用批式發酵方式,菌糠和接種物按照5:1(基于可揮發性固形物)混合,以NH4Cl作為氮源調整發酵料的C/N比為20,以蒸餾水調節發酵料TS為25%。馴化后接種物添加量分別占總接種量的0%、25%、50%、75%,100%。采用手持電動攪拌器將物料(組成見表2)充分混合后裝入5 L的廣口玻璃反應器中,蓋上連有乳膠管的橡膠瓶塞并用凡士林密封瓶口,通過真空泵反復抽真空檢查裝置氣密性。發酵產生的氣體通過與橡膠塞連接的4L聚氟乙烯氣體采樣袋收集。所有的反應器均放置在37 ℃的恒溫培養箱中。在發酵期間,每1~2 d測定產氣量、甲烷含量。每個處理3個重復。

表2 發酵料的組成
1.2.3 厭氧發酵動力學分析
采用修正的Gompertz方程[13]對添加耐酸接種物反應器進行累積產甲烷量的擬合,擬合數據取添加發酵前40 d的累積甲烷產量。
=·exp{?exp[R·e·(?)/P+1]} (1)
式中為時刻對應的累積甲烷產量,L/kg;為發酵時間,d;P為發酵總累積產甲烷量,L;R為最大產甲烷率,L/(d·kg);為發酵滯后時間,d。
pH值采用雷磁pHS-3C型pH計(上海精科科學儀器有限公司雷磁儀器廠)測定;TS采用105 ℃烘24 h,差質量法測定;VS采用550 ℃灼燒4 h,差質量法測定;氮含量采用凱氏定氮法測定[14];有機碳含量采用重鉻酸鉀外源加熱法測定;氣體體積和甲烷體積分數分別采用濕式氣體流量計(LML-1,長春汽車濾清器有限責任公司)和便攜式紅外沼氣分析儀(Biogas Check,英國 Geotech)測定;乙酸轉化率為投入乙酸的實際產氣量與理論產氣量的比值;脫氫酶酶活采用TTC-脫氫酶酶活法測定[15];纖維素酶酶活采用總酶活力測定法[15];輔酶F420酶活采用分光光度法[16]。古菌群落結構由生工生物工程(上海)股份有限公司通過Illumina MiSeq高通量測序平臺進行分析。
采用SPSS18.0軟件包進行方差統計和相關性分析,方差分析選擇 Tukey-HSD 方法。
微生物對環境脅迫有規律、逐步地適應可以提高其應對干擾的能力[17-19]。Xiao等[19]發現在7 400 mg/L高濃度乙酸沖擊下,厭氧體系對乙酸降解存在短時延滯;而經過逐步提高乙酸濃度的厭氧體系并沒有出現乙酸降解滯后,并且可以在8 200 mg/L乙酸濃度下產氣良好。Jain等[20]也證明逐步降低厭氧體系的pH值可以馴化得到耐酸的產甲烷菌。楊莉麗等[21]研究發現通過8 g/L丁酸鹽逐步馴化得到的接種物應用到餐廚垃圾的厭氧發酵中,可以獲得良好的產氣效果,見圖1。

圖1 接種物馴化過程
本研究通過逐步提高乙酸濃度降低pH值的策略對接種物持續馴化40 d,最終得到了能夠在10 200 mg/L乙酸濃度和pH值為6.0條件下穩定產氣的耐酸接種物。馴化過程中每天用6 mol/L的乙酸調節pH值1次至目標設定pH值。馴化期間由于添加的乙酸很快被轉化成甲烷,導致pH值恢復,每天產氣后的pH值差異不大,均在7.5左右(圖1a)。馴化第1階段的設定pH值為7.2,乙酸的每日添加量大約為1.0 g/L,共維持了12 d。前7 d的甲烷濃度保持在40%以下的低水平,上升較慢,第8天開始迅速升高,到本階段末的第12天則升高至60.3%(圖1c)。相應地,Hac的轉化率也在本階段末迅速升高至73.9%(圖1b)。說明經過1周左右的馴化,接種物中的乙酸型產甲烷菌被逐漸富集并適應了pH 值7.2的環境。由于本階段每日的乙酸添加量較低,甲烷日產量也維持在較低水平(圖2)。第13天開始進入到馴化第2階段,由于pH值突然降低至6.7和Hac濃度的突然增加(4.2 g/L),產甲烷菌的活性受到沖擊,甲烷濃度和Hac的轉化率分別降低至35.2%和62.7%,同時由于Hac積累產氣后pH值也明顯降低(圖1a)。但隨著產甲烷菌對馴化環境的快速適應,甲烷濃度和Hac轉化率也迅速升高。馴化第3、4階段調節的目標pH值已經超出產甲烷菌的最適生長范圍,但除了每階段的第1天外,甲烷濃度和Hac轉化率均維持在較高水平,說明乙酸型產甲烷菌逐步適應了高酸性環境并在體系內得到了富集。Dogan等[22]以處理酒精廠廢水的顆粒污泥為接種物,進行乙酸鹽厭氧發酵產甲烷活性試驗時得出乙酸鹽濃度在4 000 mg/L時開始出現產甲烷抑制現象。而本試驗研究范圍內(1 000~11 000 mg/kg)并沒有出現明顯的酸抑制現象,可能是因為本研究是通過逐步提高系統中的乙酸濃度對接種物進行馴化,培養過程中乙酸營養型的甲烷八疊球菌豐度大幅提高(表3),系統中的乙酸能夠被迅速轉化。
脫氫酶作為物質氧化還原反應過程的催化劑,其活性可以反映出微生物對基質的降解能力[23]。由圖2a所示,原始接種物(pH值7.7)的脫氫酶活性為137g/(h·g),目標pH值為7.2時脫氫酶活性增加到276g/(h·g),較初始提高了101.5%,這是由于此時pH值處于厭氧發酵各類微生物適宜pH值范圍,在此馴化階段各類微生物代謝活性強,并且接種物由室溫(20 ℃)轉移至37 ℃的恒溫環境內,同時添加乙酸作為底物也誘導了乙酸降解微生物酶活的提高,因此整體脫氫酶活性較高。在隨后的馴化階段乙酸濃度抑制部分微生物的活性,使得脫氫酶酶活下降,最終馴化結束時脫氫酶酶活為50.7g/(h·g),較初始酶活降低了63%,這也是微生物多樣性降低的結果(表3)。脫氫酶酶活在馴化周期內先上升后下降的趨勢與楊莉麗[21]在測定不同濃度丁酸鹽馴化方式下接種物脫氫酶活性的變化規律相似。
輔酶420廣泛存在于產甲烷菌中,涉及甲烷形成過程的電子傳遞[24]。許多研究表明輔酶420可以定性反映污泥產甲烷能力[25]。原始接種物(pH值7.7)輔酶420的活性僅為0.49mol/L(圖2b)。pH值7.2處于產甲烷菌最適pH值范圍內,乙酸的添加誘導大量產甲烷生長代謝活躍,此時輔酶F420活性高為59.8mol/L。pH值6.7為產甲烷菌適宜pH值的下限,此階段乙酸濃度提高,部分產甲烷菌的代謝受到了抑制,輔酶420活性下降至7.88,在之后的馴化階段,乙酸濃度進一步提高,體系內乙酸型產甲烷菌富集并逐漸適應高酸低pH值的環境,最終420酶活性為16.9mol/L,為初始酶活的33倍。
原始接種物來源于秸稈沼氣廠,因此纖維素酶初始活性較高,為371.7g/g(圖2c)。由于馴化初期階段(目標pH值為7.2)逐漸形成了厭氧環境,部分好氧纖維素降解菌失活,使得此時酶活降低了64.1%。隨著馴化的進行,接種物中殘留的纖維素類物質被降解,由于常見的纖維素降解菌產生的纖維素酶一般在酸性條件下有較高活性(pH值為5.5~6.0),因此在pH值為6.2時纖維素酶活性較高為669.7g/g,馴化最后階段乙酸濃度的提高也抑制了纖維素酶的分泌[26],因此酶活略有降低。

圖2 馴化各階段酶活變化
接種物馴化前后的主要古菌群落結構發生了明顯變化,不同古菌類群的豐度分布如表3所示。原始接種物中的古菌以氫營養型為主,乙酸營養型的甲烷八疊球菌的豐度僅占4.20%。馴化后乙酸營養型的甲烷八疊球菌豐度則大幅提高至58.10%,而氫營養型的甲烷螺菌、甲烷短桿菌等的豐度則有不同程度的下降。馴化后未分類古菌的豐度由34.47%降低至6.76%,說明古菌類群的多樣性有所降低。
添加不同比例耐酸接種物的反應器的產氣情況如圖3所示。與沒有添加耐酸接種物的對照組添加質量分數0相比,添加耐酸接種物的反應器的甲烷濃度和日產氣量在發酵初期均上升較快(圖3a,3b)。對照組的第1個日產氣量高峰延遲了2 d且持續時間較短,盡管隨后有小范圍上升但相較于添加耐酸接種物反應器明顯偏低。添加不同比例耐酸接種物的反應器的產氣趨勢基本一致,有2個明顯的產氣高峰,高效產氣時間持續較長且2個峰間隔較短。以上結果說明對照組出現了明顯的酸抑制,而添加耐酸接種物能夠顯著改善酸抑制現象。

表3 馴化前后接種物中主要古菌類群相對豐度
甲烷的含量不僅會影響沼氣的適用性和熱值而且影響后續沼氣凈化和設備維護成本,因此監測沼氣產量和甲烷濃度具有重要意義[27]。由圖3b可以看出,除對照處理外,其他處理在發酵整個過程中甲烷含量均不超過50%,略低于以玉米秸稈為主要原料的厭氧發酵情況[28-29],這可能與原料特性以及本研究采用的接種量較低有關。鄧媛方等以平菇菌糠為原料進行液態厭氧發酵時,在初始階段甲烷濃度較高,發酵中后期大幅降低,維持在40%~50%之間[30]。由于菌糠中的有機物較易降解,厭氧干發酵過程中極易發生酸抑制現象。Lin等[31]的研究表明,以菌糠為唯一原料進行厭氧干發酵時,在菌糠與接種物可揮發性固形物之比/=3和/=4的條件下均發生了嚴重的酸抑制,導致了發酵過程的失敗;即使提高接種量至/=2的情況下其甲烷含量仍然低于45%。本研究采用的接種量較低(/=5),雖然通過耐酸馴化提高了接種物中耐酸產甲烷菌的豐度,改善了接種物中的微生物群落結構,緩解了酸抑制程度,但可能仍然存在一定的酸抑制現象。
不同耐酸接種物添加量反應器的累積產氣量和甲烷產量均有顯著差異(<0.05)。隨著耐酸接種物添加量的增加呈先增加后下降,添加75%耐酸接種物的反應器的累積產氣量和甲烷產量均最高,比對照組分別提高42.8%和56.1%(圖3c)。這可能是因為發酵體系中水解、酸化、甲烷化各類菌群代謝協調一致是高效產氣的關鍵因素,而乙酸馴化過程較為單一的碳源使接種物的微生物群落結構發生了明顯改變,降低了其發酵性能。同時,只接種耐酸接種物(pH值6.0)導致體系的初始pH值偏低且緩沖能力較弱,也影響到后續的發酵產氣。

圖3 添加耐酸接種物對產氣的影響
修正的Gompertz方程可以較好的反映復雜有機物的厭氧降解過程,預測發酵趨勢,得出評價厭氧發酵性能的關鍵參數延滯時間()和產氣速率(R)[32]。對添加耐酸接種物反應器40 d的累計甲烷產量進行擬合的結果如圖4所示。從表3可以看出,所有處理的方程擬合相關系數2均大于0.99,說明該方程能夠較好地反映添加耐酸接種物厭氧干發酵的產甲烷過程。添加50%耐酸接種物的反應器有最短的延滯時間為4.28 d。添加75%耐酸接種物的反應器獲得最高的產氣速率為3.49 L/(d·kg),這與其最終較高的甲烷產量相符合。

圖4 甲烷累積產量的修正Gompertz 方程擬合曲線

表3 修正的Gompertz 方程參數
注:為時刻對應的累積甲烷產量,L·kg-1;為發酵時間,d;P為發酵總累積產甲烷量,L;R為最大產甲烷率,L·(d·kg)-1;為發酵滯后時間,d。
Note:is timecumulative methane production, L·kg-1;is fermentation time, d;Pis total cumulative methane production by fermentation, L;Ris the maximum methane production rate, L·(d·kg)-1;is fermentation lag time, d.
本文通過對接種物進行耐酸馴化改善其菌群結構,并以易水解酸化的菌糠為原料進行了厭氧干發酵試驗,探討了耐酸馴化接種物添加量對厭氧干發酵產氣特性的影響,得出如下主要結論:
1)乙酸馴化使接種物中產甲烷古菌類群的多樣性下降,乙酸營養型甲烷八疊球菌豐度由4.20%提高至58.10%。
2)適量添加耐酸接種物,提高發酵體系中乙酸型產甲烷菌的初始豐度,可以加快菌糠厭氧干發酵過程的啟動速度,避免酸抑制現象的發生,延長產氣周期,提高甲烷產量。
3)過量添加耐酸接種物會降低發酵體系緩沖能力,導致酸抑制現象和產氣量降低。
[1] Shi J, Xu F, Wang Z, et al. Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover[J]. Bioresource Technology, 2014, 157: 188-196.
[2] Andréa L, André Pauss, Ribeiro T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles[J]. Bioresource Technology, 2018, 247: 1027-1037.
[3] Wang Z, Xu F, Karthik R, et al. Fractal-like kinetics of the solid-state anaerobic digestion[J]. Waste Management, 2016, 53: 55-61.
[4] Matheri A N, Sethunya V L, Belaid M, et al. Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2328-2334.
[5] Abbassi-Guendouz A, Brockmann D, Trably E, et al. Total solids content drives high solid anaerobic digestion via mass transfer limitation[J]. Bioresource Technology, 2012, 111(3): 55-61.
[6] Rincón B, Sánchez E, Raposo F, et al. Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue[J]. Waste Management, 2008, 28(5): 870-877.
[7] Xiao K K, Guo C H, Zhou Y, et al. Acetic acid inhibition on methanogens in a two-phase anaerobic process[J]. Biochemical Engineering Journal, 2013, 75(24): 1-7.
[8] Xu Z Y, Zhao M X, Miao H F, et al. In situ volatile fatty acids in?uence biogas generation from kitchen wastes by anaerobic digestion[J]. Bioresource Technology, 2014, 163: 186-192.
[9] 蘭良程. 中國食用菌產業現狀與發展[J]. 中國農學通報,2009,25(5):205-208.
Lan Liangcheng. The status quo and development of China’s edible mushroom industry[J]. Chinese Agricultural Science Bulletin, 2009, 25(5): 205-208. (in Chinese with English abstract)
[10] Phan C W, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes[J]. Appl Microbiol Biotechnol, 2012, 96(4): 863-873.
[11] Li Y B, Park S Y, Zhu J Y. Solid-state anaerobic digestion for methane production from organic waste[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 821-826.
[12] Zhu J Y, Han M L, Zhang G K, et al. Co-digestion of spent mushroom substrate and corn stover for methane production via solid-state anaerobic digestion[J]. Journal of Renewable and Sustainable Energy, 2015, 7(2): 559-565.
[13] Zhai N, Tong Z, Yin D, et al. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure[J]. Waste Management, 2015, 38(2): 126-131.
[14] 劉福源. 沼氣發酵常規分析[M]. 成都:中國科學院成都生物研究所,1984.
[15] 劉士清,張無敵,尹芳,等. 沼氣發酵實驗教程[M]. 北京:化學工業出版社,2013.
[16] 吳唯民,蔣青. 輔酶F(420)及其在厭氧處理中的作用[J]. 中國沼氣,1984(2):3-11.
Wu Weimin, Jiang Qing. Properties of Coenzyme F420, its application in anaerobic digestion and its measurement[J]. China Biogas, 1984(2): 3-11. (in Chinese with English abstract)
[17] Carballa M, Regueiro L, Lema J M. Microbial management of anaerobic digestion: Exploiting the microbiome- functionality nexus[J]. Current Opinion in Biotechnology, 2015, 33: 103-111.
[18] Lins P, Reitschuler C, Illmer P. Methanosarcina spp., the key to relieve the start-up of a thermophilic anaerobic digestion suffering from high acetic acid loads[J]. Bioresource Technology, 2014, 152(1): 347-354.
[19] Xiao K K, Guo C H, Zhou Y, et al. Acetic acid effects on methanogens in the second stage of a two-stage anaerobic system[J]. Chemosphere, 2016, 144: 1498-1504.
[20] Jain S R, Mattiasson B. Acclimatization of methanogenic consortia for low pH biomethanation process[J]. Biotechnology Letters, 1998, 20(8): 771-775.
[21] 楊莉麗,趙明星,黃月,等. 產甲烷菌耐酸培養及其以餐廚為底物的產氣特性[J]. 環境工程學報,2016,10(11):6673-6678.
Yang Lili, Zhao Mingxing, Huang Yue, et al. Acid-tolerant cultivation of methanogen and its biogas generation characteristics from food wastes[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6673-6678. (in Chinese with English abstract)
[22] Dogan T, Ince O, Ince B K, et al. Inhibition of volatile fatty acid production in granular sludge from a UASB reactor[J]. Environmental Science and Health, 2005, 40(3): 633-644.
[23] 解軍,祁峰,裴海燕,等. 脫氫酶活性檢測方法及其在環境監測中的應用[J]. 中國環境監測,2006,22(5):13-18.
Xie Jun, Qi Feng, Pei Haiyan,et al. Determining method of dehydrogenase activity and its application in environmental monitoring[J]. Environmental Monitoring in China, 2006, 22(5): 13-18. (in Chinese with English abstract)
[24] 尹小波,連莉文,徐潔泉,等. 產甲烷過程的獨特酶類及生化監測方法[J]. 中國沼氣,1998(3):8-13.
Yin Xiaobo, Lian Liwen, Xu Jiequan, et al. Unique enzymes and biochemical monitoring methods in methanogenesis[J]. China Biogas, 1998(3): 8-13. (in Chinese with English abstract)
[25] 趙陽,李秀芬,堵國成,等. 鈷的配合物對甲烷發酵和產甲烷過程中關鍵酶的影響[J]. 食品與生物技術學報,2007,26(5):71-74.
Zhao Yang, Li Xiufen, Du Guocheng, et al. Effect of cobalt and its complexation on methane fermentation and some unique coenzymes in methanogenesis[J]. Journal of Food Science and Biotechnology, 2007, 26(5): 71-74. (in Chinese with English abstract)
[26] 余益輝,黃振興,高樹梅,等. 固相餐廚垃圾厭氧發酵特性[J]. 環境工程學報,2015,9(1):355-361.
Yu Yihui, Huang Zhenxing, Gao Shumei, et al. Characteristics of anaerobic digestion with solid kitchen waste[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 355-361. (in Chinese with English abstract)
[27] 鄧良偉. 沼氣工程[M]. 北京:科學出版社,2015.
[28] Zhu J Y, Yang L C, Li Y B. Comparison of premixing methods for solid-state anaerobic digestion of corn stover[J]. Bioresource Technology, 2015, 175: 430-435.
[29] Li Y Y, Li Y, Zhang D F, et al. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production[J]. Bioresource Technology, 2016, 217: 50-55.
[30] 鄧媛方,邱凌,孫全平,等. 蘑菇廢棄菌棒及其與豬糞混合發酵對沼氣產量及質量的影響[J]. 農業環境科學學報,2012,31(3):613-619.
Deng Yuangfang, Qiu Ling, Sun Quanping, et al. Influence of anaerobic co-digestion of mushroom cultivation wastes and pig manure on the biogas production and its quality[J]. Journal of Agro-Environment Science, 2012, 31(3): 613-619. (in Chinese with English abstract)
[31] Lin Y Q, Ge X M, Li Y B. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production[J]. Bioresource Technology, 2014, 169: 468-474.
[32] Li L H, Kong X Y, Yang F Y, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass[J]. Applied Biochemistry and Biotechnology, 2012, 166(5): 1183-1191.
Effects of acid-acclimated inoculum on solid-state anaerobic digestion of spent mushroom substrate
Zhu Jiying, Zhong Hui, Lu Yu, Zhang Qi
(,,255000,)
Solid-state anaerobic digestion (SS-AD) generally operates at solid content between 20%-40%. Due to the low water content, mass transfer in the digestion material is slow and the intermediate acids are apt to accumulate locally. Excessive acid accumulation might inhibit the activity of methanogens, reduce bigas yield, and even result in failure of the SS-AD process. Acetic acid is the most important intermediate in anaerobic digestion, and its concentration directly affects the activity of methanogens. Spent mushroom substrate (SMS) is a feasible feedstock for anaerobic digestion, because it has high organic content and the fiber and lignin have been greatly degraded during mushroom growth. However, using spent mushroom substrate as feedstock for SS-AD is easy to result in acid inhibition due to the rapid hydrolysis and acidification of the organic matters. In order to avoid acid inhibition and improve the stability of SS-AD process, the inoculum was acclimated by gradually increasing the concentration of acetic acid in this study. The acclimation process was divided into four stages at the pH value of 7.2, 6.7, 6.2 and 6.0, respectively. During acclimation stage, the pH value of the inoculum was adapt to the set value with 6 mol/L acetic acid solution and the biogas production, methane content, additive ammout of acetic acid and conversion of actic acid were measured every day. The activities of dehydrogenase, CMCase and Co420were measured at the last day of each acclimation stage. The acclimation lasted for 40 days and a acid-acclimated inoculum that can prouduce biogas quickly under the condition of acetic acid concentration of 10 200 mg/kg and pH value 6.0 was obtained. Compared to the original inoculum, the diversity of methanogens in the acid-acclimated inoculum decreased and the abundance of acetic acid diauxotrophicwas obviously enriched. The activity of dehydrogenase increased 101.5% in the first acclimation stage (pH value 7.2) and then kept decreasing during the next 3 stages. The activity of dehydrogenase reflects the metabolic capacity of all the microorganisms in the digestion system. With the decrease of pH value during the acclimation, the activity of some microorganisms was inhibited. Coenzyme420is present in various methanogens. It often be used to reflect the methane production activity of sludge. The activty of coenzyme420also reached the highest in the first acclimation stage because the pH is optimum for most methanogenes. Although the abundance of the acetic acid diauxotrophicwas significantly enriched in the final acid-acclimated inoculum, the diversity of the archaea communities was reduced due to the low pH value. The activity of cellulase in the acclimation process reached the highest in the third stage (pH value 6.7). To investigate the effects of acid-acclimated inoculum, SS-AD experiments of SMS were carried out by adding different proportion of acid-acclimated inoculum. The results showed that adding acid-acclimated inoculum could avoid acid inhibition and accelerate the start-up of SS-AD. The methane yield increased 56.1% when acid-tolerant inoculum accounted to 75%. The results can provide some theoretical guidance for effectively solving acid inhibition in SS-AD process.
methane; fermentation; biomass
2019-10-30
2019-12-14
山東省重點研發計劃(公益類)項目(2018GGX104014);山東省自然科學基金(ZR2015EM020)
朱繼英,博士,教授,主要從事有機廢棄物厭氧消化工藝及理論研究。Email:zhuying7711@sdut.edu.cn
10.11975/j.issn.1002-6819.2020.05.029
S216.4; X712
A
1002-6819(2020)-05-0249-06
朱繼英,鐘 慧,陸 玉,張 岐. 接種物耐酸馴化對菌糠厭氧干發酵產氣的影響[J]. 農業工程學報,2020,36(5):249-254. doi:10.11975/j.issn.1002-6819.2020.05.029 http://www.tcsae.org
Zhu Jiying, Zhong Hui, Lu Yu, Zhang Qi. Effects of acid-acclimated inoculum on solid-state anaerobic digestion of spent mushroom substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 249-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.05.029 http://www.tcsae.org