趙聯利



[摘要]探討數形結合思想在方程的根或函數零點問題、函數的值域問題、不等式恒成立問題、與平面區域有關的取值范圍問題、解析幾何問題中的應用,以提高學生的解題能力,培養學生的核心素養,
[關鍵詞]數形結合,解題,捷徑
[中圖分類號]G633.6[文獻標識碼]A [文章編號]1674-6058(2020)11-0017-02
數形結合是數學基本思想方法之一,它能讓抽象問題轉化為具體問題,讓復雜問題變成簡單問題,
一、方程的根或函數零點問題
方程的根對應函數的零點,函數的零點是函數圖像與橫軸交點的橫坐標,圖像能使零點一目了然,
運用數形結合思想分析解決問題時應遵循三個原則,即等價性原則、雙向性原則和簡單性原則,數與形相輔相成,不可偏廢任何一方,否則就會出錯。