劉娟 陳中鈞 賴倉隆
摘? 要:文章采用基于密度泛函理論的第一性原理方法研究摻雜Y的Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)的晶體結構、電子性質和光學性質。研究發現摻雜Y的SrAl2Si2晶體結構發生了明顯的壓縮,Sr0.5Y0.5Al2Si2發生了相變,由三方晶系轉變為單斜晶系。此外,能帶結構的計算表明,SrAl2Si2是一種半金屬,在導帶和價帶之間有很小的重疊。摻雜Y原子后,SrAl2Si2從半金屬向金屬轉變,并且隨著摻雜濃度從x=0.25,0.5到0.75,其金屬性逐漸增強,這與態密度(DOS)的計算結果一致。這些結果表明,通過提高Y的摻雜濃度,SrAl2Si2基合金的熱電性能很可能得到進一步的改善。最后,計算并分析了摻雜Y的Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)晶體的介電函數、能量損失譜和反射譜,得出Sr1-xYxAl2Si2是一種前景較好的介電材料,并且在20-30 eV能量范圍內是良好的紫外透光材料。
關鍵詞:第一性原理計算;Sr1-xYxAl2Si2;結構;電子性質;光學性質
中圖分類號:O469? ? ? ? ? 文獻標志碼:A? ? ? ? ?文章編號:2095-2945(2020)14-0001-07
Abstract: The First-Principles methods are used to study the structural, electronic and optical properties of the Y-doped Sr1-xYxAl2Si2(x=0, 0.25, 0.5 and 0.75). Indeed, the structure was compressed evidently for Y-doped SrAl2Si2, and a structural transition was observed from trigonal to monoclinic configuration for Sr0.5Y0.5Al2Si2. Besides, the structure calculations revealed that SrAl2Si2 undergo semimetal to metal-like transition and the metallic characteristics was enhanced with increasing Y content from x=0.25, 0.5 to 0.75, which is consistent with the density of states (DOS). Finally, the dielectric function, absorption spectrum, energy-loss spectrum and reflectivity were calculated and analyzed for Y-doped SrAl2Si2 crystals, which shows that it is a promising dielectric material and UV-transparent material around the range (20-30 eV).
Keywords: First-Principles calculation; Sr1-xYxAl2Si2; structure; electronic properties; optical properties
1 概述
以過渡金屬或堿性稀土金屬為主要組成部分的硅化物,由于具備多種優良的物理特性而受到了廣泛關注。[1-2]近年來,有研究表明態密度在費米能級處存在贗能隙的半導體(或半金屬)化合物,通常具有特殊的電子性質,具備成為性能優良的熱電材料的潛力,[3]這使得該類材料成為研究熱點。Kauzlarich等人[4]通過實驗證明,SrAl2Si2態密度的費米能級處存在贗能隙,這使其有望成為優良的候選熱電材料;然而純SrAl2Si2的熱電性能并不理想,這是因為在室溫下它的電阻率(ρ≈8mΩ cm)和熱導率(k≈4W/mK)都較大。如何降低電阻率和導熱率以獲得良好的熱電性能是研究人員面臨的兩個主要挑戰。早先,Lue等人[5]在實驗和理論計算中將Y摻雜到SrAl2Si2中Sr的位置,發現Sr1-xYxAl2Si2(0≤x≤0.2)的電阻率顯著減小,并指出這與摻雜修正了SrAl2Si2的電子能帶結構有關。但是,到目前為止還沒有關于更高濃度的Y摻雜SrAl2Si2的電子性質和光學性質的理論研究。所以,本文計算并分析了Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)材料的結構、電子和光學性質。
4 結論
本文采用DFT-GGA的計算方法研究了Sr1-xYxAl2Si2 (x=0,0.25,0.5和0.75) 的晶體結構、電子性質和光學性質。Y原子的摻入使得SrAl2Si2晶體結構被壓縮,并且當摻雜濃度x=0.5時,晶體結構從三角結構轉變為單斜結構。能帶結構和態密度的計算結果表明,本征SrAl2Si2屬于半金屬材料,摻雜Y原子后轉變為金屬,并且隨著摻雜濃度的增大體系費米能級處的態密度逐漸增大、費米能級上移,這使得其金屬性不斷增強。這一研究結果為提高SrAl2Si2材料的熱電優值提供了一個新思路,使該材料體系成為更具吸引力的候選熱電材料。最后,通過對比分析幾種不同摻雜濃度的介電函數、吸收光譜、反射譜、能量損失譜,得出摻雜Y后的SrAl2Si2材料不僅是前景很好的介電材料,在20~30eV能量范圍內還是一種好的紫外透光材料。
參考文獻:
[1]Sakai A , Ishii F , Onose Y , et al. Thermoelectric Power in Transition-Metal Monosilicides[J]. Journal of the Physical Society of Japan, 2007, 76(9):093601.
[2]Denisov D V , Shantsev D V , Galperin Y M , et al. Onset of Dendritic Flux Avalanches in Superconducting Films[J]. Physical review letters, 2006, 97(7):p.077002.1-077002.4.
[3]Mahan G D , Sofo J O . The best thermoelectric[J]. Proceedings of the National Academy of Sciences, 1996, 93(15):7436-7439.
[4]Kauzlarich, et al.Structure and high-temperature thermoelectric properties of SrAl2Si2[J]. journal of solid state chemistry, 2009, 182(2):240-245.
[5]Lue C S , Fang C P , Abhyankar A C , et al. Electronic structure and transport properties of SrAl2Si2: Effect of yttrium substitution[J]. intermetallics, 2011, 19(10):1448-1454.
[6]Hammer B , Hansen L B , N?Rskov J K . Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11):7413-7421.
[7]Segall M D , Pickard C J , Shah R , et al. Population analysis in plane wave electronic structure calculations[J]. Molecular physics, 1996, 89(2):p.571-577.
[8]Brutti S , Nguyen-Manh D , Pettifor D G . Lattice stability of Ca, Sr and Yb disilicides[J]. Intermetallics, 2006, 14(12):1472-1486.
[9]Z. J. Chen, M. S. Yu, T. H. Chen. First-principles study of the structural, electronic, and optical properties of Y-doped SrSi2[J]. Journal of Applied Physics, 2013, 113(4):043515.1-043515.5.
[10]Kim H , Auyeung R C Y , Ollinger M , et al. Laser-sintered mesoporous TiO2electrodes for dye-sensitized solar cells[J]. Applied Physics A, 2006, 83(1):73-76.
[11]Tang L C , Huang J Y , Chang C S , et al. New infrared nonlinear optical crystal CsGeBr3: Synthesis, structure and powder second-harmonic generation properties[J]. Journal of Physics Condensed Matter, 2005, 17(17):217-7275.
[12]G.Q. Huang, R.D. Miao. Electronic structure and electron-phonon interaction in YAl2Si2[J]. physica b condensed matter, 2007, 391(1):174-178.
[13]Imai Y , Watanabe A . Energetic and the electronic structural consideration of the 13th Group element (Ga and In) impurity doping to control the conductivity of BaSi2[J]. Intermetallics, 2007, 15(10):8219-8225.
[14]Ehrenreich H , Cohen M H . Self-Consistent Field Approach to the Many-Electron Problem[J]. Physical Review, 1959, 115(4):786-790.
[15]Toll JS . Causality and the Dispersion Relation: Logical Foundations[J]. Physical Review, 1956, 104(6):1760-1770.
[16]Singleton J , Rabe K M . Band Theory and Electronic Properties of Solids[J]. Physics Today, 2002, 55(12):61-62.