竇 博,馮輝榮
(福建農(nóng)林大學(xué) 交通與土木工程學(xué)院,福建 福州 350108)
隨著我國(guó)交通基礎(chǔ)設(shè)施建設(shè)的迅速發(fā)展,城市高架橋的結(jié)構(gòu)形式變得越來(lái)越豐富多樣[1]。由于具有結(jié)構(gòu)簡(jiǎn)單、橋下凈空大、占地面積少、工程造價(jià)低等優(yōu)點(diǎn),獨(dú)柱墩橋梁被廣泛應(yīng)用于城市立交橋以及高架橋中。但由于采用單點(diǎn)支撐方式,獨(dú)柱墩橋梁在偏心荷載作用下,其橫向穩(wěn)定性將會(huì)受到極大考驗(yàn)。目前,橋梁設(shè)計(jì)者多數(shù)只考慮橋梁的縱向抗剪和抗彎性能是否滿足要求,對(duì)橫向穩(wěn)定性的分析卻并不十分重視[2]。當(dāng)一些司機(jī)駕駛著嚴(yán)重超載的貨車駛上橫向穩(wěn)定性較差的獨(dú)柱墩橋梁時(shí),梁體極有可能發(fā)生傾覆。以2019年10月10日無(wú)錫某高架橋橋面?zhèn)确鹿蕿槔瑢?duì)獨(dú)柱墩直線梁橋的傾覆機(jī)理進(jìn)行分析和研究,總結(jié)出其發(fā)生傾覆的原因,并提出了一些提高橫向穩(wěn)定性的方法和措施。
根據(jù)無(wú)錫高架橋的傾覆視頻及有關(guān)的新聞報(bào)道和資料,可以總結(jié)出以下有效信息:①事故橋梁為3跨預(yù)應(yīng)力混凝土結(jié)構(gòu)連續(xù)梁橋,聯(lián)端為花瓶墩與雙支座組合的形式,中間支點(diǎn)采用獨(dú)柱花瓶墩與單支座組合的結(jié)構(gòu)形式,平面線形為直線;②肇事貨車嚴(yán)重超載(兩輛大貨車?yán)塾?jì)超載300 t);③事故橋梁的主梁梁體橫向側(cè)翻至地面但其結(jié)構(gòu)整體性基本完好,橋墩完好,未見(jiàn)明顯損壞。
橋梁的聯(lián)端支座在上部偏心荷載的作用之下,發(fā)生了一定程度的扭轉(zhuǎn)變形,進(jìn)而引發(fā)受力不均勻的現(xiàn)象,導(dǎo)致支座反力重分配[3]。隨著上部偏心荷載的逐漸增大,梁體扭轉(zhuǎn)也逐漸加大,當(dāng)增大至一定值時(shí),遠(yuǎn)離傾覆軸一側(cè)的單向受壓支座逐漸與梁體脫離,整個(gè)體系由幾何不變的結(jié)構(gòu)變?yōu)閹缀慰勺兊臋C(jī)構(gòu),梁體繞傾覆軸轉(zhuǎn)動(dòng)。偏心荷載繼續(xù)增大,轉(zhuǎn)動(dòng)角達(dá)到一定值時(shí),梁體發(fā)生側(cè)向滑移,引發(fā)橋梁傾覆。
確定傾覆軸線是進(jìn)行抗傾覆計(jì)算的前提,由于無(wú)錫高架橋中間支點(diǎn)采用了獨(dú)柱墩結(jié)構(gòu),事發(fā)路段的平面線形又為直線,如圖1所示,可以非常直觀地認(rèn)識(shí)到其傾覆軸線就是聯(lián)端橋臺(tái)最外側(cè)支座的連線[4]。

圖1 無(wú)錫高架橋的傾覆軸線示意
2.4.1 抗傾覆穩(wěn)定系數(shù)的表達(dá)式
為了簡(jiǎn)化計(jì)算,可以做出如下假設(shè):①假設(shè)此段橋梁每一跨的跨徑相等;②假設(shè)橋梁整體可視作為一個(gè)平面結(jié)構(gòu),梁體重力在整個(gè)平面內(nèi)均勻分布;③假設(shè)橋梁除了橫向傾覆外不會(huì)發(fā)生其他形式的破壞;④假設(shè)分析受力情況時(shí),可以將橋梁視為剛體,不考慮橋梁變形的影響[5]。沿著傾覆軸線將橋面分成上下兩部分,如圖2所示,設(shè)下側(cè)面積為S1,上側(cè)面積為S2,聯(lián)端的支座間距為d,橋面寬度為b,車道均布荷載的布設(shè)位置與梁體外側(cè)邊緣的間距為a。

圖2 無(wú)錫高架橋的簡(jiǎn)化計(jì)算模型示意
通過(guò)對(duì)傾覆軸線取矩,得出抗傾覆穩(wěn)定系數(shù)的表達(dá)式為:
(1)

(2)
K的值反映了橋梁的橫向穩(wěn)定程度,K值越大表明橫向穩(wěn)定性越高,當(dāng)K<1時(shí),抗傾覆力矩小于傾覆力矩,橋梁有傾覆的危險(xiǎn)。由式(2)可見(jiàn),抗傾覆穩(wěn)定系數(shù)K受d、a、pk等多個(gè)因素的共同制約,根據(jù)相關(guān)資料,取qk=10 m,L=82 m,=10.5 kN/m,p=10 kN/m2,探究K與d、a、pk的關(guān)系。
2.4.2K=K(a,pk)的關(guān)系函數(shù)
取d=5 m,則K=K(a,pk)是隨a、pk變化的曲面,如圖3所示,可知K受到a、pk的共同制約。抗傾覆穩(wěn)定系數(shù)K隨pk的增大而略有降低,但是pk對(duì)K的影響并不十分顯著。K主要受a的影響,隨著a的增大,K顯著增加,這說(shuō)明了重載車輛居中行駛的重要性。

圖3 的函數(shù)圖像
2.4.3 K=K(d,pk)的關(guān)系函數(shù)
取a=0.8 m,K=K(d,pk)則是隨d、pk變化的曲面,如圖4所示,可知K受到d、pk的共同作用。抗傾覆穩(wěn)定系數(shù)K隨pk的減小而增大,當(dāng)d較小時(shí),pk對(duì)K的影響不是很明顯;隨著d的增大,pk對(duì)K的影響也變得越來(lái)越明顯。隨著d的增大,K明顯增大。這充分說(shuō)明了增大聯(lián)端支座間距、限制重載車輛通行對(duì)于提升橋梁橫向穩(wěn)定性的重要性。
2.4.4 K=K(d,a)的關(guān)系函數(shù)
取pk=270 kN,則K=K(d,a)是隨d、a變化的曲面,如圖5所示,可知K受到d、a的共同影響。抗傾覆穩(wěn)定系數(shù)K隨a的增大而增大,當(dāng)d較小時(shí),a對(duì)K的影響并不明顯;隨著d的增大,a對(duì)K的影響顯著增強(qiáng)。隨著d的增大,K明顯提高。上述分析說(shuō)明了增大聯(lián)端支座間距、重載車輛居中行駛的重要性。同時(shí)也發(fā)現(xiàn),a受d的制約,二者的關(guān)系滿足式(3),a的最大值d隨的增大而減小。
d+2a≤b
(3)

圖4 的函數(shù)圖像

圖5 的函數(shù)圖像
無(wú)錫高架橋傾覆的原因可以歸結(jié)為內(nèi)因和外因2方面。內(nèi)因是由獨(dú)柱墩橋梁結(jié)構(gòu)的不合理性引起的,這種不合理性使得橋梁在極端荷載情況下橫向可以發(fā)生轉(zhuǎn)動(dòng),致使橋梁一側(cè)卸載,另一側(cè)超載,在兩側(cè)支座受力不均勻的情況下,一側(cè)的支座與梁體脫離。外因主要是肇事車輛超載嚴(yán)重,遠(yuǎn)遠(yuǎn)超出了橋梁設(shè)計(jì)的極限荷載,導(dǎo)致傾覆力矩大幅度增加,抗傾覆力矩不足以抵抗傾覆力矩,抗傾覆穩(wěn)定系數(shù)K<1,從而發(fā)生傾覆。外因應(yīng)為本次傾覆事故的主導(dǎo)因素。
不考慮自重而僅在兩端受有約束反力而平衡的構(gòu)件稱為二力構(gòu)件,又可稱之為二力桿。二力構(gòu)件在工程實(shí)際中運(yùn)用廣泛,其變形形式主要為軸向拉伸與壓縮,受力以軸力為主[6]。從結(jié)構(gòu)力學(xué)的角度來(lái)看,獨(dú)柱墩橋梁發(fā)生橫向傾覆時(shí),整個(gè)體系為幾何可變體系,不能用作結(jié)構(gòu)。為了防止傾覆,減少自由度,可以按圖6的方式布設(shè)多余約束,使體系成為超靜定結(jié)構(gòu)。那么即使在偏心荷載很大的極端情況下,由于梁體受到事先布設(shè)好的二力構(gòu)件的多余約束作用,整個(gè)體系還是幾何不變體系。此方案有助于增強(qiáng)橋梁的橫向穩(wěn)定性,提升其抗傾覆能力。
按照設(shè)置多余約束,使橋梁橫向構(gòu)成超靜定結(jié)構(gòu),在極端情況下也能保持幾何不變的思想,如圖7所示,還可以在聯(lián)端橫梁的最外側(cè)設(shè)置抗拔構(gòu)件,使橋臺(tái)臺(tái)帽和聯(lián)端橫梁連接為一個(gè)整體。當(dāng)梁體發(fā)生傾覆時(shí),臺(tái)帽與聯(lián)端橫梁的連接構(gòu)件發(fā)揮其抗拔作用,借助箱梁的整體剛度,提升梁體的抗扭能力[7]。此方法可以有效限制梁體向外扭轉(zhuǎn),預(yù)防傾覆事故的發(fā)生,進(jìn)而保證梁體的安全,起到防患于未然的作用。

圖6 二力構(gòu)件加固方案示意

圖7 橫梁抗拔構(gòu)件加固實(shí)例
對(duì)于直線橋梁來(lái)說(shuō),傾覆軸線為聯(lián)端橫梁最外側(cè)支座的連線,所以聯(lián)端支座的位置決定了傾覆區(qū)域面積的大小以及的取值范圍。而且上文對(duì)于傾覆機(jī)理的研究表明:其他條件不變時(shí),增大支座間距可以顯著提高抗傾覆穩(wěn)定系數(shù)。如果聯(lián)端橫梁的支座能夠盡可能地靠外側(cè)布置,那么傾覆區(qū)域面積很小,傾覆區(qū)域的車輛分布空間十分有限,的取值也會(huì)受限,傾覆力矩大幅度減小,橋梁的抗傾覆安全性將會(huì)大大提升。
(1)以無(wú)錫某高架橋?yàn)槔诖_定了傾覆軸線的前提下,建立了三跨獨(dú)柱墩直線梁橋的簡(jiǎn)化計(jì)算模型,推導(dǎo)出抗傾覆穩(wěn)定系數(shù)的表達(dá)式。
(2)結(jié)合相關(guān)資料,在給定參數(shù)下,探究了抗傾覆穩(wěn)定系數(shù)K與d、a、pk的關(guān)系,分析結(jié)果表明:d越大,a越大,pk越小,抗傾覆穩(wěn)定系數(shù)越高。
(3)總結(jié)了無(wú)錫高架橋傾覆的原因,為了提升獨(dú)柱墩直線梁橋的橫向穩(wěn)定性,提出了相應(yīng)的加固方案。