賈 朔 車 昊 李 洋 黃云川 張博聞 劉炳杰 劉子溪 朱宏娜
(西南交通大學 1物理科學與技術學院; 2信息科學與技術學院;3電氣工程學院,四川 成都 610031)
基于Sagnac效應[1]的光纖陀螺用于測量慣性空間的角速度,目前廣泛應用于各大領域。其中,捷聯慣性導航方面尤為突出,具有無機械活動部件、穩定性好、數字輸出精度高、耐惡劣環境等特點。光纖陀螺的輸出量容易受到環境因素影響,當工作環境變化時會產生誤差,因此,光纖陀螺的溫度補償和誤差補償方法成為研究熱點。針對上述問題,通常采用神經網絡模型[2]對光纖陀螺誤差進行補償,常用的神經網絡有BP神經網絡、RBF神經網絡、GA-BP神經網絡。騫微著等提出建立小波神經網絡模型,采用增加動量因子和自適應調整學習速率的方法來改進訓練方法,提高了光纖陀螺的輸出精度[3];湯霞清等采用小波分析單獨重構的方法分離出漂移誤差和白噪聲,然后對漂移誤差數據進行灰化處理,最后使用Elman神經網絡對灰化后的漂移誤差數據進行建模并補償,得到高精度的光纖陀螺儀的漂移誤差模型[4];顧春雷等利用遺傳算法優化網絡的權閾值,建立GA-BP神經網絡補償模型[5];楊國梁等采用RBF網絡對光纖陀螺進行零漂辨識[6]。本文采用BP神經網絡模型,對所有在室溫15℃左右的光纖陀螺實驗中的所有數據進行建模,并對光纖陀螺輸出的光強度進行補償。為驗證本文方法對光纖陀螺誤差補償的有效性,將最終的補償結果與其他方法進行對比分析;同時,將訓練后的網絡代入到驗證集的數據,驗證了本方法的可行性和魯棒性。
光纖陀螺結構如圖1所示,包括激光器,光源,分束器,透鏡,光纖環,屏幕等。本次采用的光纖陀螺是根據Sagnac效應為基礎開發的實驗系統, 激光光源發出的光通過光纖耦合器使兩個纖芯之間的光耦合,實現了分光和合光,由于存在角速度,會導致通過光纖環的兩束光到達探測器時有不同的延遲,產生相位差,而光強的變化可以反映相位差的大小[7]。利用光電二極管測量光強的變化,通過把干涉光強的變化轉換為電信號的變化,得到旋轉的角速度。進一步,通過計算機對角速度數據的處理獲得零偏、零漂、方差等參數的實時變化。

圖1 光纖環干涉儀示意圖
當光纖環繞垂直于軸心以Ω的角速度旋轉時,在兩相反方向旋轉的光產生的相位差為
Φs=4πLaΩ/λc
(1)
式中,L為光纖長度(可由半波電壓和特征頻率測得);a為光纖環半徑;λ為激光器的波長;c為真空中光速。
當整個系統在光纖環的軸向有旋轉時,由于Sagnac效應,輸出的干涉光強會發生變化,可以表示為
ID=I0(1+cosφs)
(2)
式中,I0為初始光強;φs為相位差。
輸出光經過光探測器后,通過前置放大器得到輸出光強, 并進行A/D轉換,利用式(1)、式(2)可得到以SP為單位且與角速度成線性關系的陀螺信號,進而實現對光纖陀螺角速度的實時測量。

在實際測量過程中,陀螺輸出量會受到許多因素影響,有較大的非線性,數據處理時會有很大偏差,而 BP 神經網絡對非線性函數有較好的處理能力。
BP神經網絡是一種按誤差逆傳播算法訓練的多層前饋網絡,是目前應用最廣泛的神經網絡模型之一,它能學習和存貯大量的輸入-輸出模式間的映射關系,而無需提前給出數學方程。BP 神經網絡[12]的結構主要包含輸入層、隱藏層和輸出層,其中,各層的神經元個數和隱藏層的層數由問題的復雜程度而決定。輸出層通常采用線性傳遞函數[12]。BP神經網絡結構如圖2所示。

圖2 BP神經網絡結構示意圖
BP算法是一種誤差逆傳播的算法,學習過程由正反兩個反向傳播過程組成。進行正向傳播時,學習樣本通過各層網絡依次進行處理,在輸出層獲得網絡的輸入響應,如果輸出與期望的偏差過大,則將誤差反向傳輸,逐層修正,向減少誤差的方向調整,最后到輸入層。經多次學習,可以使誤差減小到可忽略的范圍[13]。
本文選用的光纖陀螺教學系統由光纖陀螺、小型轉臺、電氣控制盒、信號源、示波器和計算機組成[14],其中光纖陀螺固定在轉臺上,電氣控制盒位于地面轉臺附近,電氣控制盒向陀螺提供包括電源在內的所有輸入電氣信號,并接收陀螺的輸出信號。實驗儀器型號為GCS-FIGY。
光纖陀螺教學系統的數據采集軟件主要完成對陀螺輸出數據的采集、顯示和保存。軟件界面中參數設置區用來設置數據采集參數,主要包括“采樣時間”“采樣間隔”“通信端口”“平滑數”“標度因數”“Y最大值”“Y最小值”;數據顯示區用來顯示對軟件采集數據的一些統計和計算結果,主要包括“當前值”“最大值”“最小值”“平均值”“方差”“零偏”“零漂”“采樣時間”[15]。
對BP神經網絡進行測試,選12個角速度下的200組數據作為訓練樣本,進行訓練。選取了分布均勻的12個角速度,而舍棄最低最高的極端情況下角速度,角速度分別為0.44、0.47、0.5、0.54、0.59、0.64、0.7、0.78、0.88、1.01、1.18、1.4deg/s。向訓練后的神經網絡輸入600組數據,得到陀螺的平均輸出值如圖3所示,圖中橫坐標為實驗次數,縱坐標為光纖陀螺輸出量的平均值,即在整個采集過程時間內,輸出量的平均值。

圖3 補償前后光纖陀螺的輸出平均值曲線
通過對其補償前后輸出值的分析,得到其補償前后輸出誤差的百分比如圖4所示,其中誤差百分比即每一次補償后的數值減去補償前的數值比上補償后的數值。

圖4 光纖陀螺的輸出誤差
通過神經網絡訓練后得到補償前后的光纖陀螺輸出變化曲線,如圖3所示,在訓練后光纖陀螺的輸出平均值隨著速度的增加而增加,輸出結果與測試結果相一致。通過圖4可以直觀地看到,經過補償后,光纖陀螺的輸出誤差較小。進一步分析,對采用BP神經網絡進行訓練后,得到的方差與零漂也由較好的改善,如圖5和圖6所示。

圖5 補償前后光纖陀螺的方差平均值曲線

圖6 補償前后的光纖陀螺零漂曲線①注:①補償后的零漂曲線和補償前的周期是一樣的,只是補償后的數據相對穩定且每一段產生的數值間距比較大,周期比較容易看出來,而補償前由于其每個周期內所產生的數值相差較大,有的零漂值相對較近,很難直觀看出來,所以相對顯示周期會變長,從而造成補償后的零漂曲線和補償前的周期不同的錯覺。
從訓練后的曲線可以看出,零漂與方差更加穩定。在訓練后,零漂的波動性變得更小,誤差也隨之減小,在訓練后,方差值顯著減小,輸出更加穩定。通過對數據的進一步分析,如表1所示,可以看出標準差有所減小,相對誤差也有大幅減小,進而可以分析得出經過訓練后的數據,更加穩定,波動小,顯著減小由外界因素產生的偏差。

表1 補償前后輸出誤差范圍與標準差
在這個神經網絡模型中,輸入層有方向、零漂、角速度,輸出層為光纖陀螺輸出。只要隱藏層的節點足夠多,就可以更加精確地逼近函數模型,但是隱藏層的節點個數并沒有一種確定的方式得出,所以我們根據資料和經驗,在反復驗證之后,選擇隱藏層節點為8個是最合適的。在神經網絡訓練完成之后,測試結果達到要求。
BP神經網絡的優點在于其非線性映射能力,能以更高精度逼近許多非線性函數,且適應能強,容錯率高。其缺點在于局部極小化,其往往收斂于不同的局部極小,神經網絡算法的收斂速度慢,且其預測與訓練能力存在一些矛盾。本光纖陀螺儀輸出數據采用BP神經網絡具有以下幾個優點:首先,使用BP神經網絡時,我們可以控制其中一個量進行補償,不需要同時考慮多個輸出量,也可以得到精度很高的輸出,為其應用提供便利的條件;其次,準確性好,BP網絡補償精度很高,與其他補償方法相比,由于其非線性映射能力的優點,可以將精度的量級進行提高。
針對光纖陀螺具有復雜非線性、一般補償方法難以精確補償的問題。本文提供一種基于BP神經網絡的補償措施,將BP神經網絡運用到光纖陀螺誤差補償的工作中,建立了光纖陀螺溫度、角速度、標度因數、零漂之間的非線性函數關系模型,使用大量訓練樣本進行補償,并對其進行分析。結果有如下幾個優點:首先,補償精度有所提升。通過對訓練樣本的補償,得到的數據與原測試數據相比,精度有一定提高。其次,補償比較便利。使用BP神經網絡無需考慮溫度對輸出及零漂方差等測試量的影響。在光纖陀螺的輸出數據時,可以同時得到多個輸出量。在通用性方面,BP神經網絡的通用性好。在外界條件的影響下,BP神經網絡依舊可以以比較高的精度進行誤差減小,補償效果好。最后,神經網絡的應用性好。文中對數據訓練后的結果與試驗結果相比有了很好的補償,證明了該模型的可應用性。對光纖陀螺的誤差補償有一定的參考價值。