999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE NUCLEARITY OF COMPLETELY 1-SUMMING MAPPING SPACES*

2021-01-07 06:46:22ZheDONG

Zhe DONG (董 浙)

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China E-mail : dongzhe@zju.edu.cn Yafei ZHAO (趙亞菲)

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310012, China E-mail : zhaoyafei zju@163.com

For the ordinary systems of mapping spaces,we can give the following definition:

Definition 1.3An operator spaceVis nuclear(in the system)if there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

As we know,mapping spaces provide a fundamental tool for studying Banach spaces and operator spaces.In this note,we are interested primarily in the nuclearity in the system of completely 1-summing mapping spaces(Π1(·,·),π1).To our surprise,we obtain that C is the unique operator space which is nuclear in the system(Π1(·,·),π1).

2 Nuclearity in(Π1(·,·),π1)

Definition 2.1An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the point-norm topology:

Lemma 2.2An operator spaceVis nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤1.

ProofSuppose thatVis nuclear in the system of(Π1(·,·),π1);it is clear thatVis nuclear.From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1,which approximately commute in the point-norm topology:

Corollary 13.4.2 in[5]implies thatν(ψα??α)≤π1(ψα)·π1(?α)≤1.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤1.Thusπ1(idV)≤ι(idV)≤1.

Conversely,suppose thatVis nuclear andπ1(idV)≤1.By the nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

Theorem 2.4An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if and only ifV=C.

ProofIt is clear,by the definition ofπ1in Section 1,thatπ1(idC)=1.Thus it follows from Definition 2.1 that C is nuclear in the system of(Π1(·,·),π1).

To prove the necessity of this,we suppose thatVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1).From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the pointnorm topology:

It follows from Lemma 2.2 thatπ1(idV)≤1.By Corollary 13.4.2 in[5]we have

ThusidVis completely nuclear.Proposition 12.2.1 in[5]shows thatidVis compact in the Banach space sense,and from classical theory,Vmust be finite dimensional,and soV=V??.By Lemma 2.2 and Theorem 14.6.7 in[5],V=V??is injective.Thus,by Corollary 6.1.8 in[5]we have

Sinceiis a complete isometry andPis a complete quotient mapping,i?is a complete quotient mapping andP?is a complete isometry.Thus it follows from(7.1.27)and Proposition 8.1.5 in[5]that the following embeddings are complete isometries:

3λ-Nuclearity in(Π1(·,·),π1)

Definition 3.1An operator spaceVisλ-nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

It is clear from Definition 2.1 and Definition 3.1 that nuclearity in(Π1(·,·),π1)is equivalent to 1-nuclearity in(Π1(·,·),π1).

Lemma 3.2An operator spaceVisλ-nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤λ.

ProofThe proof is similar to that of Lemma 2.2.Suppose thatVisλ-nuclear in the system of(Π1(·,·),π1);it follows from Definition 3.1 and Definition 1.3 thatVis nuclear and that there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

Thus we haveν(ψα??α)≤π1(ψα??α)≤‖ψα‖cb·π1(?α)≤λ.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤λ.Thusπ1(idV)≤ι(idV)≤λ.

Conversely,suppose thatVis nuclear andπ1(idV)≤λ.By nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

主站蜘蛛池模板: 国内精品小视频福利网址| 亚洲成人黄色在线| 久久亚洲黄色视频| 亚洲欧美日韩中文字幕一区二区三区| 久久精品无码一区二区国产区| 国产视频 第一页| 国产一在线| 日韩天堂网| 国产精品一区二区久久精品无码| 亚洲综合激情另类专区| 亚洲天堂网在线观看视频| 国产乱论视频| 成人字幕网视频在线观看| 乱码国产乱码精品精在线播放| 欧美无专区| 亚洲三级片在线看| 在线无码私拍| 最新日韩AV网址在线观看| 欧洲在线免费视频| 女同国产精品一区二区| 干中文字幕| 国产91导航| 国产精品久久久久无码网站| 嫩草国产在线| 国产精品永久不卡免费视频 | 国产迷奸在线看| 老汉色老汉首页a亚洲| 国产精选小视频在线观看| 国产精品偷伦视频免费观看国产 | 国产亚洲高清在线精品99| 欧美精品H在线播放| 精品久久久久久成人AV| 欧美亚洲国产精品久久蜜芽| 午夜国产不卡在线观看视频| 欧美一级视频免费| 91精品网站| 亚洲国产欧美目韩成人综合| 午夜日本永久乱码免费播放片| 亚洲日韩每日更新| 国产91精品调教在线播放| 亚洲永久精品ww47国产| 毛片在线区| 日韩二区三区无| 啊嗯不日本网站| 久久综合色天堂av| 亚洲品质国产精品无码| 亚洲成年人片| 欧洲一区二区三区无码| 激情爆乳一区二区| 新SSS无码手机在线观看| 国产sm重味一区二区三区| www.91中文字幕| 国产人成在线视频| 国产精品视频猛进猛出| 国产在线欧美| 美女无遮挡免费视频网站| 麻豆国产在线观看一区二区 | 日本高清免费不卡视频| 日本尹人综合香蕉在线观看 | 免费看一级毛片波多结衣| 成人午夜视频免费看欧美| 免费国产高清视频| 久久久无码人妻精品无码| 欧美日本在线播放| 久久久久国产精品熟女影院| 在线不卡免费视频| 日本草草视频在线观看| 婷婷开心中文字幕| 欧美国产成人在线| 色综合久久综合网| 亚洲AⅤ波多系列中文字幕| 亚洲中文无码h在线观看 | 久久国产黑丝袜视频| 日日拍夜夜操| 成年人国产视频| 99人妻碰碰碰久久久久禁片| AV不卡在线永久免费观看| 一级毛片不卡片免费观看| 无码专区在线观看| 亚洲精品免费网站| 欧美日韩一区二区三区四区在线观看| 亚洲成人精品|