莊宿軍 汪志飛
(華東電力設計院有限公司,上海200063)
在測量數據的處理中,數值分析方法使用的越來越多,其中插值法更是解決了由于實際測量中儀器頻率過低從而導致數據不完整等類似的問題。文章[1]中采用三次樣條函數插值方法獲取遙感衛星引導數據,并證明該方法計算的引導數據不但平滑,而且加速度變化穩定。文章[2]中采用局部多項式法、克里金插值法、線性插值三角網法等三種方法,對海浪數據進行插值,并對比了三者的插值效果, 結果表明線性插值三角網法對邊界和岸界處理明顯優于局部多項式法、克里金插值法。目前,隨著科技的進步,水下地形測量發展的速度非常快,測量手段從最初的測深繩到現在的測深儀,效率成倍的提高。但在使用測深儀進行測量的時候,會碰到一個問題:GNSS 和測深儀由于構造不同,采集的數據并不具有同步性。而我們需要獲得的水下地形數據,位置和高程必須是要同步的,所以本文采用插值法來解決此問題。由于目前可用的插值方法眾多,本文選取了三種插值方法進行插值,并對插值的結果進行了比較分析。
對某個多項式函數,已知有給定的k+1 個取值點:

其中xj對應著自變量的位置,而yj對應著函數在這個位置的取值。
假設任意兩個不同xj的都互不相同,那么應用拉格朗日插值公式所得到的拉格朗日插值多項式為:


牛頓插值公式:


等間距牛頓差值公式:



表1 三種插值結果

圖1 三種插值結果

在進行某區域水下地形測量時,測深儀頻率為0.5Hz,2 秒采集一個點,GNSS 接收機頻率為1Hz,1 秒采集1 一個點,由此會導致GNSS 數據與測深儀數據不能相互對應。表1 中時間為奇數秒的為測深儀數據實測數據,偶數秒的為文中介紹的三種方式的內插水深值。
將三種插值結果進行比較分析,如圖1 所示。
從上圖可以看出拉格朗日插值結果與實際數據趨勢相比較,有一部分插值數據有“跳動”現象,這些數據與附近數據相比,變化幅度較大。
牛頓插值結果要比拉格朗日插值結果更加平緩,很少有插值數據突然偏離數據曲線,所以牛頓插值結果要比拉格朗日插值結果更符合實際情況。
而三次樣條插值結果則比前兩種插值結果更具有連續性,曲線很平滑,插值后的結果與附近數據相比具有很強的邏輯性,所以在對本次測深數據的插值處理中,三次樣條插值要比拉格朗日插值和牛頓插值要更加適用。
本文結合實際水下地形測量中的測深數據,分別利用拉格朗日插值、牛頓插值和三次樣條插值解決了測深數據與GNSS同步問題,同時對三種插值方法進行比較分析,得出了三次樣條插值方法更加適合于處理測深數據的結論。