牛偉萍,牛偉曉,張國寧,朱梅,何紅偉,王菊仙
·論著·
膽酸二聚體化合物的設計、合成及抑制肝細胞凋亡研究
牛偉萍,牛偉曉,張國寧,朱梅,何紅偉,王菊仙
100050 北京,中國醫學科學院北京協和醫學院醫藥生物技術研究所合成室
通過設計合成膽酸二聚體化合物及評價其體外抑制肝細胞凋亡活性,發現新型治療慢性肝病的候選化合物。
以熊去氧膽酸、鵝去氧膽酸和奧貝膽酸為起始原料,經親電取代、脫水縮合、氫化等反應制備目標化合物。通過測定半胱氨酸天冬氨酸蛋白酶 3、7的活性水平評價目標化合物體外抑制肝細胞凋亡的活性。
合成膽酸二聚體化合物 24 個,體外活性結果表明部分目標化合物具有較好的抑制肝細胞凋亡活性,12 個化合物(1a、1e、1h、2a、2c、2e、2f、2g、3a、3c、3d、5a)在 20 μmol/L 濃度下抑制肝細胞凋亡的活性優于陽性對照物牛磺熊去氧膽酸(40.94%)。化合物1a、1e、2a和5a的抑制率分別為 75.60%、88.56%、83.25% 和 105.24%,是陽性對照的 2 倍。
熊去氧膽酸和鵝去氧膽酸二聚體具有抑制肝細胞凋亡的活性,奧貝膽酸二聚體無抑制肝細胞凋亡的活性;連接膽酸骨架的連接鏈長度對活性有明顯的影響,其中具有較短連接鏈(N,N'-二甲基乙二胺、四甲基乙二胺、乙二醇二甲醚)的化合物(1a、1e、2a)的活性優于具有較長連接鏈(N,N'-二甲基-1,8-辛二胺、2,5,8,11,14,17-六氧十八烷)的化合物(1g、3e)的活性。
合成; 抑制肝細胞凋亡; 熊去氧膽酸; 鵝去氧膽酸; 奧貝膽酸
慢性肝病是多種復雜疾病的總稱,包括非酒精性脂肪肝(NAFLD)/非酒精性脂肪性肝炎(NASH)、肝纖維化和肝硬化等,這些慢性肝病的共同特征是肝細胞的凋亡和(或)壞死的激活[1-3]。盡管肝細胞具有強大的再生能力[4-8],然而,當細胞凋亡或壞死程度超過一定的閾值時,肝臟的再生能力不足以抵消肝細胞的大量凋亡,肝細胞被纖維化的瘢痕取代,肝功能受到損害,從而逐漸導致肝纖維化、肝硬化甚至是肝功能衰竭等病情嚴重、治愈率低的慢性肝病[9]。因此,通過抑制肝細胞的凋亡,減輕肝損傷,可以起到保護肝臟,防治慢性肝病的效果。
膽汁酸是一類具有特殊理化和生物學特性的酸性類固醇分子[10],如熊去氧膽酸(UDCA)、鵝去氧膽酸(CDCA)和 CDCA 的衍生物奧貝膽酸(OCA)等,大部分膽汁酸及其衍生物可抑制肝細胞凋亡,保護肝細胞[10-13]。本課題組在前期工作中,設計合成了 UDCA 與生物素相連生物探針分子,活性結果顯示此生物探針具有抑制肝細胞凋亡的作用。結合文獻調研結果[14-15],推測膽酸二聚體也可能會具有抑制肝細胞凋亡活性。基于此,我們設計合成了化合物1d及2a,對其進行了初步的活性測定。活性結果顯示,化合物2a顯示出較好的抑制肝細胞凋亡活性,在 25 μmol/L 濃度下可以顯著抑制由三氯乙酸(TCA)誘導的小鼠肝細胞炎癥趨化因子水平的上升,在 10 μmol/L 濃度下即可以顯著抑制由甘氨鵝去氧膽酸(GCDCA,鵝去氧膽酸的甘氨酸偶聯形式)誘導的原代人肝細胞的凋亡。
通過頭對頭策略合成的膽汁酸二聚體已被證實具有抗革蘭氏陽性菌、抗真菌和抗惡性細胞增殖的活性[16-18],而膽汁酸二聚體對抑制肝細胞凋亡方面的研究尚未見報道。綜上所述,此文以 UDCA、CDCA 和OCA為先導化合物設計合成了一系列膽汁酸二聚體類化合物,并評價了其抑制肝細胞凋亡的活性,以期獲得具有更強抑制肝細胞凋亡作用的化合物,為慢性肝病藥物的研發提供思路。
1.1.1 主要儀器 400 MHz、500 MHz 和 600 MHz核磁共振儀購自德國Bruker 公司;MP-70 熔點儀購自瑞士梅特勒公司,未校正;1100 型四級桿液質聯用儀購自美國Agilent 公司;自檢式 Ultima-TOF 質譜儀購自美國賽默飛科技公司。
1.1.2 主要試劑 UDCA、CDCA、OCA、1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽(EDCI)、N-羥基琥珀酰亞胺等試劑均為市售分析純或化學純。
1.1.3 實驗動物 10 周齡雄性 Balb/C 小鼠,體重 20 ~ 30 g,購自北京維通利華實驗動物中心。維持在 12 h 的晝夜節律下,自由攝取標準飲食和水直至實驗當天。
1.2.1 目標化合物的合成 化合物1a~1h的合成如圖1 所示。以 UDCA 為起始原料,在無水 N,N-二甲基甲酰胺(DMF)中,以EDCI活化羧酸以獲得活性酯中間體1-1,中間體1-1通過與不同的連接鏈縮合反應得到目標化合物1a~1h[17]。
化合物2a~2g、3a~3e和4a~4b的合成路線如圖2 所示。以化合物2a為例,采用 UDCA 為原料,以 3,4-二氫-2H-吡喃保護羥基,得到中間體2-1,在 EDCI/1-羥基苯并三唑(HOBT)/1,8-二氮雜二環十一碳-7-烯(DBU)介導下與連接鏈 2a 縮合反應獲得中間體2a-2,隨后在對甲苯磺酸吡啶鎓鹽的催化下除去保護基得到目標化合物2a[19]。化合物2b~2g、3a~3e和4a~4b均使用與上述相同的方法合成。
化合物5a~5b的合成路線如圖3 所示。分別將 UDCA、CDCA 和OCA 與三氟甲磺酸叔丁基二甲基硅烷酯反應得到中間體5-1、6-1和7-1。在 EDCI/HOBT/DBU 介導下,中間體5-1與等摩爾比的 2-[2-(芐氧基)乙氧基]乙醇縮合得到中間體5-2。5-2在 Pd/C 催化下氫解,除去芐基保護基,得到中間體5-3。5-3在 EDCI/HOBt/DBU 介導下,分別與中間體6-1或7-1縮合,分別得到5a-4和5b-4,以氟化氫吡啶除去叔丁基二甲基硅烷保護基得到目標化合物5a~5b。
1.2.2 抑制肝細胞凋亡活性測試 以(GCDCA)誘導小鼠的原代肝細胞凋亡[13-15, 20-21],通過測定半胱氨酸天冬氨酸蛋白酶 3/7(caspase 3/7)的活性水平評價目標化合物體外抑制肝細胞凋亡的活性。
通過膠原酶灌注技術分離肝細胞。將新鮮分離的肝細胞以 1 × 106個/ml 的密度懸浮在 WilliamE培養基的混合物中(WilliamE 培養基中添加了10% FBS、100 IU/ml 青霉素 G 鈉和 100 IU/ml硫酸鏈霉素)。將肝細胞在 37.0 ℃、5% CO2的培養箱中培養。細胞接種后 4 h 更換培養基,以盡量減少死細胞的污染。將分離的肝細胞在不同的 William E 培養基中孵育 4 h。William E 培養基分為 4 組,分別為加入 GCDCA(200 μmol/L)組、空白對照組(不加任何化合物)、實驗組(加入目標化合物1a~5b 20 μmol/L和 GCDCA 200 μmol/L的混合物)及陽性對照組(分別加入 UDCA、CDCA、TUDCA 或 OCA 20 μmol/L和 GCDCA 200 μmol/L的混合物)。

a:1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽、N-羥基琥珀酰亞胺,無水 N,N-二甲基甲酰胺,氬氣保護,35℃,12 h;b:連接鏈 1a ~ 1h,無水 DMF,氬氣保護,35 ℃,3 h
a: N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, N-hydroxysuccinimide, anhydrous N,N-Dimethylformamide, Ar, 35 ℃, 12 h; b: linker 1a - 1h, anhydrous DMF, Ar, 35 ℃, 3 h
圖1 化合物1a~1h的合成路線
Figure 1 Syntheses of compounds 1a - 1h

a:3-4-二氫-2H-吡喃,對甲苯磺酸一水合物,1-4-二氧六環,rt,3 h,60%;b:1-羥基苯并三唑,1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽,1,8-二氮雜二環十一碳-7-烯,無水 DMF,30 ℃,12 h;c:對甲苯磺酸吡啶鎓鹽,甲醇,60 ℃,12 h
a: 3,4-Dihydro-2H-pyran, p-Toluenesulfonic acid monohydrate, 1,4-Dioxane, rt, 3 h, 60%; b: 1-Hydroxybenzotriazole (HOBT), EDCI, 1,8-Diazabicyclo [5.4.0]undec-7-ene, anhydrous DMF, 30 ℃, 12 h; c: Pyridinium p-toluenesulfonate, methanol, 60 ℃, 12 h
圖 2 化合物2a~4b的合成路線
Figure 2 Syntheses of compounds 2a - 4b
1.2.3 Caspase3/7 活性測定 根據 caspase3/7 分析試劑盒說明書測量 caspase3/7 活性。
抑制率(%)=[1 –(化合物 caspase – 空白組caspase)/(GCDCA 組 caspase – 空白組 caspase)] × 100%。
共合成 24 個膽酸類二聚體,化合物結構均經1H-NMR、13C-NMR和 MS 確證。部分代表性目標化合物的1H-NMR、13C-NMR 和 MS 數據如下。
2.1.1 (4R,4'R)-N,N'-(乙烷-1,2-二基)雙(4-((3R,5S, 7S,8R,9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酰胺)(1a) 白色固體,收率 61%;mp:149 ~ 150 ℃;1H-NMR(600 MHz,CD3OD-4)3.53-3.44(m,4H),3.27(s,4H),2.28-2.20(m,2H),2.12-2.00(m,4H),1.95-1.87(m,4H),1.86-1.75(m,6H),1.66-1.00(m,38H),0.99-0.95(m,12H),0.72(s,6H)。13C-NMR(151 MHz,CD3OD-4)δ 177.19,72.13,71.96,57.55,56.56,44.82,44.51,44.05,41.61,40.73,40.09,38.63,38.03,36.94,36.10,35.19,34.24,33.35,31.06,29.73,27.99,23.95,22.40,19.06,12.69。HRMS-ESI():831.6274(C50H84N2O6Na+;[M+Na]+,Calc. 831.6227)。
2.1.2 (4R,4'R)-N,N'-(氧雙(乙烷-2,1-二基))雙(4-((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酰胺)(1b) 白色固體,收率 65%;mp:143 ~ 144 ℃;1H-NMR(600 MHz,CD3OD-4)3.53-3.45(m,8H),3.36-3.33(m,4H),2.30-2.23(m,2H),2.17-2.09(m,2H),2.08-2.02(m,2H),1.95-1.76(m,10H),1.67-1.39(m,21H),1.38-1.00(m,15H),0.98(s,4H),0.72(s,6H)。13C-NMR(151 MHz,CD3OD-4)176.92,72.12,71.93,70.52,57.56,56.58,44.83,44.51,44.05,41.63,40.75,40.31,38.63,38.05,36.93,36.11,35.19,34.16,33.36,31.08,29.75,27.99,23.97,22.42,19.12,12.72。HRMS-ESI():875.6452(C52H88N2O7Na+;[M+Na]+,Calc. 875.6490)。

a:三氟甲磺酸叔丁基二甲基硅烷酯,N,N-二異丙基乙胺,無水二氯甲烷,室溫,2 h,40%;b:HOBT,EDCI,DBU,2-[2-(芐氧基)乙氧基]乙醇,無水 DMF,35 ℃,12 h,51%;c:Pd/C,H2,乙醇,77%;d:6-1 或 7-1,HOBT,EDCI,DBU,DMF;e:氟化氫吡啶鹽,四氫呋喃,室溫,2 h
a: Trifluoromethanesulfonic acid tert-butyldimethylsilyl ester, N,N-Diisopropylethylamine, anhydrous DCM, rt, 2h, 40%; b: HOBT, EDCI, DBU, 2-[2-(Benzyloxy)ethoxy]ethanol, anhydrous DMF, 35 ℃, 12 h, 51%; c: Pd/C, H2, ethanol, 77%; d: 6-1 or 7-1, HOBT, EDCI, DBU, DMF; e: Pyridine hydrofluoride, Tetrahydrofuran, rt, 2 h
圖 3 化合物5a~ 5b的合成路線
Figure 3 Syntheses of compounds 5a - 5b
2.1.3 乙烷-1,2-二基(4R,4'R)-雙(4-((3R,5S,7S,8R, 9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酸酯)(2a) 白色固體,收率61%;mp:99 ~ 100 ℃;1H-NMR(600 MHz,Chloroform-)4.27(s,4H),3.77-3.38(m,5H),2.42-2.33(m,2H),2.30-2.20(m,2H),2.06-1.95(m,3H),1.95-0.98(m,60H),0.94(d,= 9.3 Hz,13H),0.68(s,6H)。13C-NMR(151 MHz,Chloroform-)174.11,71.58,71.47,62.18,55.95,55.07,43.92,43.89,42.59,40.31,39.38,37.46,37.05,35.48,35.08,34.22,31.37,31.12,30.52,28.76,27.08,23.54,21.33,18.55,12.30。HRMS-ESI():833.5912(C50H82O8Na+;[M+Na]+,Calc. 833.5908)。
2.1.4 氧雙(乙烷-2,1-二基)(4R,4'R)-雙(4-((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酸酯)(2b) 白色固體,收率53%;mp:73 ~ 75 ℃;1H-NMR(600 MHz,Chloroform-)4.25-4.18(m,4H),3.71-3.65(m,4H),3.61-3.53(m,4H),2.42-2.34(m,2H),2.29-2.21(m,2H),2.11(s,4H),1.99(d,= 12.5 Hz,2H),1.93-1.85(m,2H),1.85-1.74(m,8H),1.69-1.62(m,4H),1.61-1.53(m,4H),1.52-1.19(m,25H),1.17-0.97(m,8H),0.94-0.91(m,12H),0.67(s,6H)。13C-NMR(151 MHz,Chloroform-)174.32,71.53,71.43,69.24,63.44,55.93,55.07,43.89,43.85,42.59,40.30,39.38,37.43,37.04,35.42,35.07,34.20,31.70,31.31,31.08,30.44,28.76,27.04,23.53,22.76,21.32,18.55,14.23,12.28。HRMS-ESI():877.6203(C52H86O9Na+;[M+Na]+,Calc. 877.6170)。
2.1.5 乙烷-1,2-二基(4R,4'R)-雙(4-((3R,7R,8R,9S, 10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六烷基-1H-環戊[a]菲基-17-基)戊酸酯)(3a) 白色固體,收率52%;mp:103 ~ 105 ℃;1H-NMR(400 MHz,Chloroform-)4.32(s,3H),3.90(s,2H),3.61-3.43(m,2H),2.49-2.37(m,2H),2.34-2.19(m,4H),2.11-1.01(m,22H),1.01-0.88(m,11H),0.71(s,6H)。13C-NMR(101 MHz,Chloroform-)174.01,72.08,68.57,62.08,55.79,50.45,42.72,41.50,39.88,39.66,39.43,35.39,35.37,35.07,34.62,32.89,31.17,31.01,30.65,28.21,23.79,22.82,20.62,18.30,11.81。HRMS-ESI():833.5909(C50H82O8Na+;[M+Na]+,Calc. 833.5908)。
2.1.6 氧雙(乙烷-2,1-二基)(4R,4'R)-雙(4-((3R,7R, 8R,9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六烷基-1H-環戊[a]菲基-17-基)戊酸酯)(3b) 白色固體,收率44%;mp:94 ~ 95 ℃;1H-NMR(400 MHz,Chloroform-)4.27(t,= 4.6 Hz,4H),3.89(s,2H),3.78-3.70(m,4H),3.56-3.45(m,2H),2.49-2.37(m,2H),2.35-2.17(m,4H),2.10-1.08(m,37H),1.08-0.99(m,1H),0.99-0.88(m,12H),0.70(s,6H)。13C-NMR(101 MHz,Chloroform-)174.24,72.02,69.16,68.51,63.35,55.81,50.46,42.70,41.51,39.86,39.67,39.44,35.37,35.07,34.64,32.86,31.13,30.95,30.67,28.21,23.74,22.82,20.62,18.32,11.80。HRMS-ESI():877.6232(C52H86O9Na+;[M+Na]+;Calc. 877.6170)。
2.1.7 乙烷-1,2-二基(4R,4'R)-雙(4-((3R,7R,8S,9S, 10S,13R,14S,17R)-6-乙基-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酸酯)(4a) 白色油狀物,產率 35%;1H-NMR(600 MHz,Chloroform-)3.71-3.68(m,2H),3.65(s,6H),2.38-2.31(m,2H),2.25-2.18(m,2H),1.95(m,2H),1.93-1.86(m,2H),1.85-1.73(m,10H),1.71-1.55(m,4H),1.54-1.08(m,25H),0.99(td,= 14.3,3.5 Hz,2H),0.94-0.86(m,18H),0.65(s,6H)。13C-NMR(101 MHz,Chloroform-)174.79,72.36,70.92,55.77,51.52,50.54,45.22,42.77,41.20,40.05,39.62,35.56,35.53,35.39,34.02,33.26,31.03,30.66,28.19,23.73,23.18,22.26,20.77,18.29,11.81,11.69。HRMS-ESI():867.6741(C54H91O8+;[M+H]+,Calc. 867.6715)。
2.1.8 2-(2-(((R)-4-((3R,5S,7R,8R,9S,10S,13R,14S, 17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酰基)氧基)乙氧基)乙基(R)-4-((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-二羥基-10,13-二甲基十六氫-1H-環戊[a]菲基-17-基)戊酸酯(5a) 白色固體,收率61%;mp:78 ~ 79 ℃;1H-NMR(600 MHz,Chloroform-)4.26-4.19(m,4H),3.87-3.82(m,1H),3.69(t,= 4.8 Hz,4H),3.63-3.54(m,2H),3.50-3.42(m,1H),2.43-2.34(m,2H),2.30-2.16(m,3H),2.03-0.96(m,29H),0.95-0.90(m,12H),0.67(d,= 10.7 Hz,6H)。13C-NMR(101 MHz,Chloroform-)174.25,174.22,72.03,71.45,71.37,69.15,68.51,65.60,63.34,55.81,55.75,54.90,50.48,43.77,42.71,42.46,41.50,40.16,39.88,39.67,39.44,39.21,37.31,36.89,35.38,35.35,35.29,35.07,34.96,34.63,34.10,32.86,31.15,31.14,30.96,30.94,30.67,30.59,30.34,28.66,28.20,26.92,23.74,23.42,22.80,21.20,20.60,19.21,18.42,18.32,13.76,12.17,11.81。HRMS-ESI():853.6152(C52H85O9-;[M-H]-,Calc. 853.6193)。
目標化合物體外抑制肝細胞凋亡活性的結果見表 1,部分目標化合物顯示較好的抑制肝細胞凋亡活性,12 個化合物(1a、1e、1h、2a、2c、2e、2f、2g、3a、3c、3d、5a)在 20 μmol/L濃度下抑制肝細胞凋亡的活性高于陽性對照物牛磺熊去氧膽酸(40.94%),化合物1a、1e、2a和5a的抑制率分別為 75.60%、88.56%、83.25% 和 105.24%。
表 1 化合物1a~5b的化學結構、物理性質及抑制肝細胞凋亡活性
Table 1 Structures, physical data and inhibitory activity against GCDCA-induced hepatocyte apoptosis of compounds 1a - 5b


編號Comp.R1R2手性Chirality連接鏈LinkerMp(℃)b抑制率(%)Inhibition ratio (%) UDCA–a–a–a–a203 ~ 20441.03 ± 15 CDCA–a–a–a–a165 ~ 16725.94 ± 44 OCA–a–a–a–a108 ~ 110–52.16 ± 19 TUDCA–a–a–a–a173 ~ 17540.94 ± 45 1aHH7S,7'S149 ~ 15075.60 ± 17 1bHH7S,7'S143 ~ 14423.48 ± 48 1cHH7S,7'S124 ~ 125–8.23 ± 56 1dHH7S,7'S–c22.27 ± 14 1eHH7S,7'S113 ~ 11488.56 ± 43 1fHH7S,7'S120 ~ 122–409.07 ± 141 1gHH7S,7'S117 ~ 1183.65 ± 32 1hHH7S,7'S108 ~ 11043.91 ± 26 2aHH7S,7'S99 ~ 10083.25 ± 19 2bHH7S,7'S73 ~ 7535.76 ± 36 2cHH7S,7'S75 ~ 7641.15 ± 12 2dHH7S,7'S68 ~ 7040.43 ± 22 2eHH7S,7'S67 ~ 6848.37 ± 16 2fHH7S,7'S–c70.08 ± 20 2gHH7S,7'S–c53.58 ± 26 3aHH7R,7'R103 ~ 10563.11 ± 12 3bHH7R,7'R94 ~ 9540.03 ± 20 3cHH7R,7'R62 ~ 6357.48 ± 19 3dHH7R,7'R65 ~ 6650.55 ± 8
續表 1

編號Comp.R1R2手性Chirality連接鏈LinkerMp(℃)b抑制率(%)Inhibition ratio (%) 3eHH7R,7'R–c19.17 ± 21 4aCH2CH3CH2CH37R,7'R–c–52.42 ± 96 4bCH2CH3CH2CH37R,7'R–c–120.48 ± 124 5aHH7S,7'R78 ~ 79105.24 ± 9 5bHCH2CH37S,7'R73 ~ 74–466.46 ± 241
注:a不適用;b熔點儀未經校正;c油狀物。
Notes:aNot applicable;bMelting point apparatus uncorrected;cOily substance.
目標化合物體外抑制肝細胞凋亡活性結果表明,膽汁酸二聚體的膽汁酸骨架和連接鏈都對其抑制肝細胞凋亡的活性產生影響。UDCA 二聚體(1a~2g)和 CDCA 二聚體(3a~3e)顯示出抑制肝細胞凋亡的活性,而 OCA 及其二聚體(4a,4b)均不顯示抑制肝細胞凋亡的活性。美國食品藥品監督管理局(FDA)最近發布的安全警告指出,OCA 可能與增加的肝損傷和死亡風險相關[22],實驗結果證實了這一聲明。
在 UDCA 二聚體中,連接鏈的種類對活性的相對貢獻如下:N,N,N',N'-四甲基乙二胺(1e,88.56%)> 1,2-二甲氧基乙烷(2a,83.25%)> N,N'-二甲基-1,2-乙二胺(1a,75.60%)> 二甘醇二甲醚,三甘醇二甲醚等(2b-2e)。CDCA 二聚體也顯示出類似情況,連接鏈對活性的相對貢獻如下:1,2-二甲氧基乙烷(3a,63.11%)>二甘醇二甲醚(3b,40.03%)> 2,5,8,11,14,17-六氧十八烷(3e,19.17%)。化合物抑制肝細胞凋亡的活性隨連接鏈長度的增加而降低,這表明具有較短連接鏈的化合物可能比具有較長連接鏈的化合物具有更明顯的抑制肝細胞凋亡的活性。本文推測產生這種活性規律的原因是長鏈柔性連接鏈可能導致膽酸片段的疏水面互相重疊形成夾層,從而影響化合物與靶點的結合。綜上所述,該研究結果表明部分膽汁酸二聚體具有抑制肝細胞凋亡活性,值得進一步深入研究,從而為慢性肝病藥物的研發提供可行的方案。
[1] Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr Physiol, 2013, 3(2):567-598.
[2] Campana L, Iredale JP. Regression of liver fibrosis. Semin Liver Dis, 2017, 37(1):1-10.
[3] Guicciardi ME, Malhi H, Mott JL, et al. Apoptosis and necrosis in the liver. Compr Physiol, 2013, 3(2):977-1010.
[4] Huang J, Rudnick DA. Elucidating the metabolic regulation of liver regeneration. Am J Pathol, 2014, 184(2):309-321.
[5] Fan M, Wang X, Xu G, et al. Bile acid signaling and liver regeneration. Biochim Biophys Acta, 2015, 1849(2):196-200.
[6] Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology, 2006, 43(2 Suppl 1):S45-S53.
[7] Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol, 2004, 5(10):836-847.
[8] Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol, 2010, 176(1): 2-13.
[9] Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology, 2006, 43(2 Suppl 1):S31-S44.
[10] Amaral JD, Viana RJ, Ramalho RM, et al. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res, 2009, 50(9):1721- 1734.
[11] Castro RE, Solá S, Steer CJ, et al. Bile acids as modulators of apoptosis.//Sahu SC. Hepatotoxicity: from genomics to in vitro and in vivo models. New York: John Wiley & Sons, Ltd, 2008:391-419.
[12] Solá S, Castro RE, Kren BT, et al. Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-beta1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes. Biochemistry, 2004, 43(26):8429-8438.
[13] Rust C, Karnitz LM, Paya CV, et al. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem, 2000, 275(26):20210-20216.
[14] Takikawa Y, Miyoshi H, Rust C, et al. The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology, 2001, 120(7):1810- 1817.
[15] Schoemaker MN, Conde de La Rosa L, Buist-Homan M, et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology, 2004, 39(6):1563-1573.
[16] Pandey PS, Rai R, Singh RB. Synthesis of cholic acid-based molecular receptors: head-to-head cholaphanes. J Chem Soc Perkin Trans 1, 2002, 1(7):918-923.
[17] Singla P, Dalal P, Kaur M, et al. Bile acid oligomers and their combination with antibiotics to combat bacterial infections. J Med Chem, 2018, 61(22):10265-10275.
[18] Salunke DB, Hazra BG, Pore VS, et al. New steroidal dimers with antifungal and antiproliferative activity. J Med Chem, 2004, 47(6): 1591-1594.
[19] Miyashita M, Yoshikoshi A, Grieco PA. Pyridinium p-toluenesulfonate. A mild and efficient catalyst for the tetrahydropyranylation of alcohols. J Org Chem, 1977, 42(23):3772-3774.
[20] Guicciardi ME, Gores GJ. Bile acid-mediated hepatocyte apoptosis and cholestatic liver disease. Dig Liver Dis, 2002, 34(6):387-392.
[21] Faubion WA, Guicciardi ME, Miyoshi H, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest, 1999, 103(1):137-145.
[22] Jiang Z, Liu X, Yuan Z, et al. Discovery of a novel selective dual peroxisome proliferator-activated receptor α/δ agonist for the treatment of primary biliary cirrhosis. ACS Med Chem Lett, 2019, 10(7):1068-1073.
Design, synthesis and efficacy of bile acid oligomers in inhibiting glycochenodeoxycholic acid-induced hepatocyte apoptosis
NIU Wei-ping, NIU Wei-xiao, ZHANG Guo-ning, ZHU Mei, HE Hong-wei, WANG Ju-xian
Organic Synthesis Chamber, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
To design, synthesize and evaluate the efficacy of bile acid oligomers in inhibiting glycochenodeoxycholic acid-induced hepatocyte apoptosisto provide candidate compounds for the development of drugs for chronic liver disease.
Oligomers of bile acids (ursodeoxycholic acid, chenodeoxycholic acid, and obeticholic acid) were synthesized by electrophilic substitution, condensation reaction, hydrogenation, etc. The inhibitory effects of target compounds were evaluated on glycochenodeoxycholic acid-induced hepatocyte apoptosis by measuring caspase3/7 level.
Most of the synthesized bile acid oligomers displayed inhibitory activity against hepatocyte apoptosis. Among synthesized compounds, 12 target compounds (1a, 1e, 1h, 2a, 2c, 2e, 2f, 2g, 3a, 3c, 3d, 5a) were more potent than positive control tauroursodeoxycholic (40.94%). Especially, compounds 1a, 1e, 2a, and 5a exhibited substantial antiapoptotic activity, with inhibition rates of 75.60%, 88.56%, 83.25% and 105.24%, respectively.
Ursodeoxycholic acid oligomers and chenodeoxycholic acid oligomers, instead of obeticholic acid oligomers, exhibit potent inhibitory effect. Compounds with shorter linker (1a, 1e, 2a) exhibit more obvious activity than that of compounds with longer linker (1g, 3e).
Synthetic; Hepatocyte apoptosis; Ursodeoxycholic acid; Chenodeoxycholic acid; Obeticholic acid
WANG Ju-xian, Email: imbjxwang@163.com
國家自然科學基金(81703366、81673497);中國醫學科學院醫學科學創新基金(2016-I2M-3-014);“重大新藥創制”國家科技重大專項(2019ZX09201001-003)
王菊仙:imbjxwang@163.com
10.3969/j.issn.1673-713X.2020.04.007
2020-02-26