999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性

2020-08-31 14:50:31王星昭顧海波馬麗娜陳奕如

王星昭 顧海波 馬麗娜 陳奕如

摘 ?要: 研究了Hilbert空間中具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性.在控制系統(tǒng)對應(yīng)的線性系統(tǒng)是近似可控的這一假設(shè)下,通過使用分?jǐn)?shù)階微積分理論、半群理論、變分法和Schaefer不動(dòng)點(diǎn)定理,得到了控制系統(tǒng)有限近似可控的充分條件.

關(guān)鍵詞: Hilfer分?jǐn)?shù)階導(dǎo)數(shù); 發(fā)展方程; 非局部條件; 有限近似可控性

中圖分類號: O 231.2 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號: 1000-5137(2020)04-0371-10

Abstract: We discuss the finite-approximate controllability of Hilfer fractional evolution equations of Sobolev type with nonlocal conditions in Hilbert spaces.With the assumption that the corresponding linear system is approximately controllable,we obtain sufficient conditions for finite-approximate controllability of the control system by using fractional calculus,semigroup theory,variational analysis and Schaefer fixed point theorem.

Key words: Hilfer fractional derivative; evolution equation; nonlocal conditions; finite-approximate controllability

0 ?引 ?言

近20年來,分?jǐn)?shù)階微分方程的定性理論、穩(wěn)定性和可控性概念,因其在科學(xué)和工程等諸多領(lǐng)域的廣泛應(yīng)用,受到越來越多的數(shù)學(xué)家、物理學(xué)家和工程師們的關(guān)注.近幾年間,有大批學(xué)者研究了多種不同類型的線性和非線性動(dòng)力系統(tǒng)的可控性問題.例如:2013年,KERBOUA等[1]研究了Hilbert空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的Sobolev型隨機(jī)發(fā)展方程的近似可控性,方程具有非局部條件;2015年,MAHMUDOV等[2]研究了Hilbert空間中一類帶有Hilfer分?jǐn)?shù)階導(dǎo)數(shù)的發(fā)展方程的近似可控性;2016年,GE等[3]用近似法,研究了Banach空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的發(fā)展方程的近似可控性,方程具有非局部條件和脈沖條件;2017年,CHANG等[4]利用預(yù)解算子的性質(zhì),研究了Banach空間中兩類Sobolev型發(fā)展方程的近似可控性,即一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù),一類帶有Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù);2018年,MAHMUDOV用近似法和變分法,分別研究了Hilbert空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)發(fā)展方程的偏近似可控性[5]和有限近似可控性[6],方程具有非局部條件;2019年,HE等[7]研究了Hilbert空間中一類帶有Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)的隨機(jī)波動(dòng)方程的近似可控性;HUANG等[8]研究了Banach空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的拋物方程的近似可控性.

然而,具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性至今還沒有被研究.事實(shí)上,在線性系統(tǒng)中,若控制系統(tǒng)是近似可控性的,則其一定也是有限近似可控的[9-11],但在非線性系統(tǒng)中,卻沒有這一結(jié)論.由此可見,有限近似可控性是一個(gè)比近似可控性更強(qiáng)的性質(zhì).

參考文獻(xiàn):

[1] KERBOUA M,DEBBOUCHE A.Approximate controllability of Sobolev type nonlocal fractional stochastic dynamic systems in Hilbert spaces [J].Abstract and Applied Analysis,2013,2013:262191.

[2] MAHMUDOV N,MCKIBBEN M.On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative [J].Journal of Function Spaces,2015,2015:263823.

[3] GE F D,ZHOU H C.Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique [J].Applied Mathematics and Computation,2016,275:107-120.

[4] CHANG Y K,PEREIRA A.Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators [J].Fractional Calculus and Applied Analysis,2017,20(4):963-987.

[5] MAHMUDOV N.Partial-approximate controllability of nonlocal fractional evolution equations via approximating method [J].Applied Mathematics and Computation,2018,334:227-238.

[6] MAHMUDOV N.Finite-approximate controllability of fractional evolution equations:variational approach [J].Fractional Calculus and Applied Analysis,2018,21(4):919-936.

[7] HE J W,PENG L.Approximate controllability for a class of fractional stochastic wave equations [J].Computers and Mathematics with Applications,2019,78(5):1463-1476.

[8] HUANG Y,LIU Z H.Approximate controllability for fractional semilinear parabolic equations [J].Computers and Mathematics with Applications,2019,77(11):2971-2979.

[9] FABRE C,PUEL J P.Approximate controllability of the semilinear heat equation [J].Proceedings of the Royal Society of Edinburgh Section A:Mathematics,1995,125(1):31-61.

[10] LIONS J L,ZUAZUA E.The cost of controlling unstable systems:time irreversible systems [J].Revista Matemaeica UCM,1997,10(2):481-523.

[11] ZUAZUA E.Finite dimensional null controllability for the semilinear heat equation [J].Journal de Mathématiques Pureset Appliquées,1997,76(3):237-264.

[12] PODLUBNY I.Fractional Differential Equations [M].San Diego:Academic Press,1999.

[13] HILFER R.Applications of Fractional Calculus in Physics [M].Singapore:World Scientific,2000.

[14] GU H B,TRUJILLO J J.Existence of mild solution for evolution equation with Hilfer fractional derivative[J].Applied Mathematics and Computation,2015,257:344-354.

[15] ZHOU Y,JIAO F.Nonlocal Cauchy problem for fractional evolution equations [J].Nonlinear Analysis:Real World Applications,2010,11(5):4465-4475.

[16] MAHMUDOV N.Finite-approximate controllability of evolution equations [J].Applied and Computational Mathematics,2017,16(2):159-167.

[17] CURTAIN R F,ZWART H J.An Introduction to Infinite Dimensional Linear Systems Theory [M].New York:Springer-Verlag,1995.

(責(zé)任編輯:馮珍珍)

主站蜘蛛池模板: www.亚洲色图.com| 成人午夜亚洲影视在线观看| 精品自窥自偷在线看| 中文字幕天无码久久精品视频免费| 无码精油按摩潮喷在线播放| 国产午夜无码片在线观看网站| 成人精品区| 91精品专区国产盗摄| 国产91熟女高潮一区二区| 尤物在线观看乱码| 狠狠亚洲五月天| 热re99久久精品国99热| 国产女同自拍视频| 一本大道无码高清| 国产成人高清精品免费5388| 日韩无码真实干出血视频| 国产99久久亚洲综合精品西瓜tv| 久久国产拍爱| 国产97公开成人免费视频| 67194在线午夜亚洲| 国产真实二区一区在线亚洲| 亚洲国产中文在线二区三区免| аⅴ资源中文在线天堂| 精品欧美视频| 婷婷久久综合九色综合88| 麻豆a级片| 潮喷在线无码白浆| 色噜噜在线观看| 国产欧美日韩专区发布| 91免费精品国偷自产在线在线| 日韩精品毛片| 国产成人一区| 国产精品自拍露脸视频| 欧美黄色网站在线看| 亚洲女同一区二区| 999国产精品| 国产精品一区二区不卡的视频| 一级一毛片a级毛片| 欧美日韩精品一区二区视频| 深夜福利视频一区二区| 九九九国产| 亚洲aaa视频| 久久精品亚洲专区| 强乱中文字幕在线播放不卡| 亚洲av无码片一区二区三区| 亚洲全网成人资源在线观看| 在线播放精品一区二区啪视频| 第一区免费在线观看| 青青草欧美| 国产精品手机视频一区二区| 国产真实乱了在线播放| 亚洲国产理论片在线播放| 国产黄色视频综合| www.日韩三级| 欧美日韩亚洲综合在线观看 | 亚洲免费黄色网| 国产麻豆另类AV| 在线日韩日本国产亚洲| 欧美午夜在线观看| 国产精品嫩草影院视频| 四虎影视8848永久精品| 精品無碼一區在線觀看 | 无码高潮喷水在线观看| 亚洲自偷自拍另类小说| 婷婷激情亚洲| 天堂成人av| 在线观看国产黄色| 黄色网在线免费观看| 99热国产这里只有精品无卡顿"| 亚洲成网777777国产精品| 日韩精品成人在线| 亚洲区一区| 国产小视频a在线观看| 日韩第一页在线| 国产日本欧美在线观看| 国产丝袜第一页| 亚洲无码视频一区二区三区| 午夜a视频| 亚洲全网成人资源在线观看| 欧美一区二区丝袜高跟鞋| 久久精品亚洲专区| 日韩精品免费一线在线观看|