鐘霖 馬淑芳 萊蒙



摘 ?要: 考慮了一類分段連續型延遲偏微分方程.首先分析了方程的解析解,給出了級數形式的解.其次采用無網格法求解了該類方程的數值解.利用θ-加權有限差分法對方程的時間變量進行離散,并利用Multiquadric(MQ)徑向基函數和配點法建立了全離散格式.采用傅里葉分析法給出了數值方法穩定的條件.通過數值算例給出了方法的誤差及驗證了方法的有效性.
關鍵詞: 分段連續型延遲偏微分方程; 無網格插值法; Multiquadric(MQ)徑向基函數; 穩定性
中圖分類號: O 241 ? ?文獻標志碼: A ? ?文章編號: 1000-5137(2020)04-0381-06
Abstract: We consider a class of delay partial differential equation with piecewise continuous arguments in this paper.First,we analyze the analytical solution of the equation and give the solution in the series form.Second,we solve the numerical solution of the equation by meshless interpolation method.The time variable of the equation is discretized by the θ-weighted finite difference method,and the full dispersion scheme is established by the multiquadric(MQ) radial basis function and the collocation method.Fourier analysis gives stability conditions of the numerical method.We also compute the errors and check the validity of the numerical method by concrete examples.
Key words: delay partial differential equation with piecewise continuous arguments; meshless interpolation method; multiquadric(MQ) radial basis function; stability
0 ?引 言
1977年,許多學者開始了對分段連續型延遲微分方程的研究.MYSHKIS等[1-3]做了奠定性的基礎工作.該類方程同時具有微分方程和差分方程的性質,與自動控制類問題是密不可分的,因此受到學者的高度重視.眾所周知,延遲微分方程的解析解是不易獲得的,因此,發展該類方程數值解的研究是十分必要的.人們在該類方程數值解的穩定性、收斂性的研究上已取得顯著成果.例如,YANG等[4]利用Runge-Kutta法給出了滯后型分段連續型微分方程數值解的穩定性分析,確定了Runge-Kutta法的穩定域,給出了在數值穩定區域中包含解析穩定域的條件.XIE等[5]利用θ-法求解了多維分段連續型延遲微分方程數值解的穩定性.LIANG等[6]應用Runge-Kutta法討論了復線性系統u'(t)=Lu(t)+Mu([t])的穩定性.
3 ?結 ?論
本文作者分析了一類分段連續型延遲偏微分方程,該類方程有微分方程和差分方程的性質,其精確解不易獲得,因此發展該類方程的解法是十分必要的.首先,給出了方程解析解的級數形式.然后,采用無網格法求解了該類方程的數值解.采用傅里葉分析法給出了數值方法穩定的條件.最后,給出數值算例驗證了方法的有效性.
參考文獻:
[1] MYSHKIS A D.On centain problems in the theory of differential equations with deviating argument [J].Russian Mathematical Survey,1977,32(2):181-213.
[2] COOKE K L,WIENER J.Retarded differential equations with piecewise constant delays [J].Journal of Mathematical Analysis and Applications,1984,99(1):265-297.
[3] SHAH S M,WIENER J.Advanced differential equations with piecewise constant argument deviations [J].International Journal of Mathematics and Mathematical Sciences,1983,6(4):671-703.
[4] YANG Z W,LIU M Z,SONG M H.Stability of Runge-Kutta methods in the numerical solution of equation u'(t)=au(t)+a_0 u([t])+a_1 u([t-1]) [J].Applied Mathematics and Computation,2003,162(1):37-50.
[5] 謝鈺程,王琦.多維分段連續型延遲微分方程的穩定性 [J].嶺南師范學院學報,2016,37(6):20-27.
XIE J C,WANG Q.The stability of high-dimensional differential equations with piecewise continuous arguments [J].Journal of Lingnan Normal University,2016,37(6):20-27.
[6] LIANG H,LIU M Z,YANG Z W.Stability analysis of Runge-Kutta methods for systems u′(t)=Lu(t)+Mu([t]) [J].Applied Mathematics and Computation,2014,228:463-476.
[7] WANG Q,WEN J.Analytical and numerical stability of partial differential equations with piecewise constant arguments [J].Numerical Methods for Partial Differential Equations,2014,30(1):1-16.
[8] LIANG H,LIU M Z,LYU W.Stability of θ-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments [J].Applied Mathematics Letters,2010,23(2):198-206.
[9] LIANG H,SHI D,LYU W.Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument [J].Applied Mathematics and Computation,2010,217(2):854-860.
[10] WIENER J.Generalized Solutions of Functional Differential Equations [M].Singapore:World Scientific,1993.
[11] 劉桂榮,顧元通.無網格法理論及程序設計[M].王建明,周學軍,譯.濟南:山東大學出版社,2007.
LIU G R,GU Y T.An Introduction to Meshfree Methods and Their Programming [M].WANG J M,ZHOU X J,Transl.Jinan:Shandong University Press,2007.
[12] 杜珊,李風軍.新變參MQ擬插值函數的性質及其逼近性能研究 [J].應用數學學報,2019,42(5):655-669.
DU S,LI F J.Study on the properties and approximation capability with a new variable shape parameter [J].Acta Mathematicae Applicatae Scienca,2019,42(5):655-669.
[13] 李榮華,劉播.微分方程數值解法 [M].4版.北京:高等教育出版社,2009.
LI R H,LIU B.Numerical Solutions of Differential Equations [M].4th ed.Beijing:Higher Education Press,2009.
(責任編輯:馮珍珍)