999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于擴展卡爾曼濾波器的網絡隊列預測

2020-09-02 06:31:23余菁菁
軟件導刊 2020年8期
關鍵詞:通信網絡

余菁菁

摘 要:為解決網絡隊列動態預測問題,提出一個網絡系統在泊松分布流量和指數服務時間下的暫態隊列行為預測模型并進行仿真驗證。闡述基于擴展卡爾曼濾波(Kalman)的預測模型及其具體算法,結合網絡中的數據流量特性,構建基于擴展卡爾曼濾波器的網絡暫態隊列預測模型,并根據仿真網絡中的實際數據對模型進行驗證。實驗結果表明,所建立的網絡暫態隊列實時預測模型預測效果比較理想,基本與實時隊列長度保持一致。因此,該模型可以較低的代價應用于網絡中的動態路由算法及擁塞控制算法中。

關鍵詞:通信網絡;擴展卡爾曼濾波器;泊松流量;OPNET仿真;預測模型

DOI:10. 11907/rjdk. 192161 開放科學(資源服務)標識碼(OSID):

中圖分類號:TP393文獻標識碼:A 文章編號:1672-7800(2020)008-0212-04

Abstract: In order to solve the problem of network queue estimator dynamically, this paper presents the derivation of the transient queue behavior for a network with Poisson traffic and exponential service times and the result is then validated. The extended Kalman filter theory is presented and a network state estimator is designed using the transient queue behavior model combing with networks traffic trait. The behavior of the network state estimator is then investigated using traffic data from the simulated network. Simulation results show that the proposed scheme have a good prediction of queue size in network, and the prediction results are consistent with the real-time queue length, so it can be used in the algorithm of dynamic routing and congestion control algorithm with low cost.

Key Words: communication network; extended Kalman filter; poisson traffic; OPNET simulation; network state estimator

0 引言

現有絕大部分路由算法、流量控制算法和擁塞控制算法都是針對相對固定的網絡設計的,沒有考慮網絡的隨機變化特征,所以這些靜態算法對于動態變化的網絡(如Ad-hoc網絡、傳感器網絡和車載網絡等)效果不佳。如果對網絡的隨機特征可以精確建模,即利用過去的狀態估計現在狀態及預測未來狀態,則可利用該模型設計適合動態變化的路由算法、流量控制算法和擁塞控制算法等。

現有研究主要是對網絡流量進行預測,分為線性預測和非線性預測。線性預測具有代表性的是ARIMA[1-2],其前提是網絡流量具有線性寬平穩過程特征,但其預測精度較低,無法準確描述出網絡全部特征。文獻[3]提出基于卡爾曼濾波的流量預測,其引入狀態方程和測量方程,有效處理了系統噪聲和測量噪聲,從一定程度上提高了預測精度;非線性預測具有代表性的是小波分析[4]和神經網絡[5],但基于小波分析的模型預測實時性較差,基于神經網絡的模型收斂速度慢,且容易陷入局部次優。文獻[6]、[7]提出將卡爾曼濾波與小波分析相結合的預測模型,提高了預測精度。可以看出,以上研究都是對網絡流量整體建立一個預測模型,而沒有對路由器端口的某一特定隊列進行建模預測,因此這些預測模型不能直接運用到動態路由算法中,無法實現對路由器端口進行實時調整的目標。為了更加精確地預測網絡流量狀態,本文主要基于路由器端口隊列對網絡狀態進行研究。

一般認為通信網絡是一個排隊網絡,隊列是網絡中的一個重要組成部分,隊列大小從某種程度上可以表示此刻網絡的狀態,所以本文主要研究網絡隊列狀態建模與估計。通過對網絡隊列暫態行為進行建模,并將其測量值輸入擴展卡爾曼濾波器以預測網絡狀態。仿真結果表明,該方法預測效果比較理想,可應用于網絡中的動態路由算法和擁塞控制算法中。

1 隊列模型與擴展卡爾曼濾波理論

1.1 隊列模型

設置source和queue中的參數與圖2中的一致,得到數據包暫態數量如圖4所示。由于每次仿真都產生不同的泊松流量,對隊列大小影響較大,所以單次仿真并不能反映真實結果。因此,運行20次仿真后得到隊列大小的平均值如圖5所示。可以看到,經過多次平均后,實際隊列穩定后的大小與理論值基本一致,為之后正確預測奠定了很好的基礎。

3.2 隊列預測結果

上文內容給出了單個隊列的行為,下面研究組成網絡后隊列的行為。在給定包含噪聲的觀測值后,通過擴展卡爾曼濾波預測隊列大小。擴展卡爾曼濾波在Matlab上實現,本文采用芬蘭埃斯波赫爾辛基理工大學提供的EKF擴展卡爾曼濾波工具箱,網絡中的實際流量通過OPNET仿真得到。網絡拓撲采用簡單的直線型結構,路由協議采用RIP,如圖6所示。通過定義Application和Profile模塊,從而定義兩個終端的通信類型,這里采用TCP服務。

運行仿真100s后,觀測Router1中的隊列大小,得到結果如圖7中藍線所示。本文設置采樣間隔為10s,即每10s采集一次實際路由器隊列長度,加上強度為12的高斯白噪聲之后,輸入到擴展卡爾曼濾波器中,得到的預測結果如圖7中紅線所示。橫坐標為采樣時刻,縱坐標為隊列大小,從圖中可以看出,預測結果走勢與網絡實際情況基本一致,完全能夠滿足實際需要,所以該方法可運用到網絡中的動態路由算法和擁塞控制算法中。

然而,預測結果與實際情況還有細微差別,下一步工作要從更加精確的隊列模型及其它預測方法入手,以更準確地預測網絡中的隊列大小。

4 結語

在動態路由和擁塞控制方法中,必須知道網絡實時狀態才能動態調整采取的策略。本文提出一種基于擴展卡爾曼濾波方法的網絡隊列預測方案,實驗結果表明,該方法能夠預測網絡隊列大小的大致走勢,可將該方案運用于動態路由、流量控制及擁塞控制等算法,對網絡路由與擁塞策略進行實時調整,從而避免因實時測量網絡狀態帶來較大代價。在本方案中,隊列模型的準確性與噪聲的相關性都會影響預測結果,而且只預測了隊列大小。針對這些問題,下一步將采用其它隊列模型和預測方法以更準確地預測網絡狀態,并預測延遲等其它狀態量。

參考文獻:

[1] YU G,ZHANG C. Switching ARIMA model based forecasting for traffic flow [C]. International Conference on Acoustics, Speech, and Signal Processing,2004: 429-432.

[2] XU C, LI Z,WANG W. Short-term traffic flow prediction using a methodology based on autoregressive integrated moving average and genetic programming[J]. ?Transport, 2016, 31(3):343-358.

[3] 伍錫銹. 基于小波分析的Kalman濾波組合模型在邊坡監測中的應用[J]. 工程勘察, 2019, 47(3):71-75.

[4] 崔楊, 曲鈺, 王錚,等. 基于Daubechies6離散小波的風電集群功率匯聚效應的時頻特性分析[J]. 中國電機工程學報, 2019, 39(3):38-48,320.

[5] 任師濤, 史志才, 吳飛,等. ?基于改進BP神經網絡的路由器流量預測方法[J]. 傳感器與微系統, 2018(8):49-50,54.

[6] LI Y, CHAO W, GONG J. A wavelet transform‐adaptive unscented Kalman filter approach for state of charge estimation of LiFePo4 battery[J]. ?International Journal of Energy Research, 2018, 42(2):587-600.

[7] MOHAMMADI F, FARD A F, GHORBANI M A. Application of cross-wavelet-linear programming-Kalman filter and GIUH methods in rainfall-runoff modeling[J]. ?Environmental Earth Sciences, 2019.

[8] GROSS D,HARRIS C M.Fundamentals of queuing theory [M]. New York:Wiley-Interscience,1998.

[9] PERSONE V D N, BALSAMO S, ONVURAL R. Analysis of queueing networks with blocking[M]. Dordorecht: Dore Kluwer Academic Publishers, 2001.

[10] PERSONE V D N, CASALE G, SMIRNI E. Approximate analysis of blocking queueing networks with temporal dependence [C]. ?Hong Kong: IEEE/IFIP International Conference on Dependable Systems&networks, 2011.

[11] ZHENG Y, GAO W, OUYANG M, et al. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J]. Journal of Power Sources, 2018,(383):50-58.

[12] 劉廣哲,張科,呂梅柏,等. 基于擴展卡爾曼濾波算法的雙模制導仿真研究[J]. 航空兵器,2018(1):27-32.

[13] WITKOVSKY V. Matlab algorithm mixed.m for solving Hendersons mixed model equations[M]. ?New York: Social Science Electronic Publishing,2002.

[14] PRASAD K,ASHLESH R M,PRASAD C,et al. An automated method using MATLAB to identify the adductor sesamoid for determining the onset of puberty and assessing the skeletal age in children[M]. Singapore: New York,2019.

[15] GUILLEMIN F, SLIM F. Sojourn time in an M/M/1 processor sharing queue with permanent customers[J]. Stochastic Models, 2018, 34(4):1-23.

[16] XU X, WANG X, SONG X, et al. Fluid model modulated by an M/M/1 working vacation queue with negative customer[J]. ?Acta Mathematicae Applicatae Sinica, 2018, 34(2):404-415.

[17] PAHLEVAN M,OBERMAISSER R. Evaluation of time-triggered traffic in time-sensitive networks using the OPNET simulation framework[C]. IEEE 2018 26th Euromicro International Conference on Parallel,Distributed and Network-based Processing,2018:283-287.

[18] CHONG C, ZUO Y Q, ZHANG F. Research on comprehensive performance simulation of communication IP network based on OPNET[C]. International Conference on Intelligent Transportation,2018:195-197.

[19] RASHID T A, BARZNJI A O. A virtualized computer network for Salahaddin university new campus of HTTP services using OPNET simulator[M]. ?Berlin: ?Springer, 2018.

(責任編輯:黃 健)

猜你喜歡
通信網絡
指揮信息系統通信網絡拓撲結構分析研究
卷宗(2016年10期)2017-01-21 15:31:51
淺談通信網絡安全維護中的常見問題及對策
大經貿(2016年11期)2017-01-06 13:07:55
空間激光通信研究及發展趨勢
物聯網關鍵技術的發展對通信網絡的影響
軍民融合背景下通信網絡協調發展策略
電力系統通信的網絡安全問題
通信網絡中的告警相關性分析
通信網絡的現狀及發展方向分析
基于數字總線技術的民用飛機客艙系統通信網絡
科技視界(2016年23期)2016-11-04 20:14:00
試析計算機通信網絡安全維護管理工作
主站蜘蛛池模板: 99热6这里只有精品| 一本大道视频精品人妻| 久久国产精品麻豆系列| 国产成人调教在线视频| 凹凸精品免费精品视频| 99久久这里只精品麻豆| 97一区二区在线播放| 亚洲香蕉在线| 91免费国产在线观看尤物| 91口爆吞精国产对白第三集| 精品国产电影久久九九| 亚洲国产午夜精华无码福利| 欧美97色| www.亚洲色图.com| 毛片免费视频| 国产在线一区视频| 极品国产一区二区三区| 久久亚洲高清国产| 亚洲欧美另类中文字幕| 久久精品人人做人人综合试看| 国产a v无码专区亚洲av| 国内精品久久人妻无码大片高| 欧美福利在线播放| 国产美女叼嘿视频免费看| 99视频在线观看免费| 97人妻精品专区久久久久| 国产凹凸一区在线观看视频| 中文字幕在线免费看| 欧美色图第一页| 欧美综合中文字幕久久| 黄色网在线| www精品久久| 喷潮白浆直流在线播放| 精品五夜婷香蕉国产线看观看| 黑人巨大精品欧美一区二区区| 国产精品护士| 亚洲综合香蕉| 欧美成人午夜视频免看| 亚洲欧美成人网| 日韩欧美成人高清在线观看| 狠狠色成人综合首页| 综1合AV在线播放| 免费无码AV片在线观看国产| 狠狠亚洲婷婷综合色香| 久久成人18免费| 爆乳熟妇一区二区三区| 久久国产V一级毛多内射| 99在线观看免费视频| 精品色综合| 九九视频免费在线观看| 91热爆在线| 国产麻豆aⅴ精品无码| 日韩av电影一区二区三区四区| 亚洲va欧美va国产综合下载| 国产精品欧美日本韩免费一区二区三区不卡 | 国产成人高精品免费视频| 免费中文字幕一级毛片| 国内精品视频区在线2021| 成人午夜在线播放| 欧美综合成人| 亚洲AV电影不卡在线观看| 亚洲国产亚洲综合在线尤物| 青草国产在线视频| 久久综合国产乱子免费| 青草精品视频| 日韩av高清无码一区二区三区| 欧美日韩午夜视频在线观看| 中文字幕永久在线看| 国产v精品成人免费视频71pao| 欧美激情第一欧美在线| 亚洲三级色| 色天堂无毒不卡| 波多野结衣在线一区二区| 精品久久蜜桃| 无码高潮喷水在线观看| 色综合久久综合网| 97国产在线播放| 成年人国产视频| 久久免费视频播放| 日本一区中文字幕最新在线| 99视频免费观看| 国产成人高清在线精品|