董姝楠,夏繼紅,王為木,劉 慧,盛麗婷
·專題:農業面源污染綜合防治·
土壤-地下水中微塑料遷移的影響因素及機制研究進展
董姝楠,夏繼紅,王為木,劉 慧,盛麗婷
(河海大學農業科學與工程學院,南京 210098)
微塑料在環境中廣泛分布,世界范圍內的農業土壤及地下水中都已發現微塑料污染,生態環境和人體健康受到嚴重威脅。研究土壤-地下水中微塑料遷移的影響因素及機制,對于準確評價其分布歸趨及環境風險具有重要意義。該研究通過文獻調研,對土壤-地下水環境中微塑料的來源、團聚及遷移研究進行梳理、歸納和總結,系統闡明了土壤-地下水中微塑料遷移的影響因素,剖析了影響微塑料遷移的機制,并對未來研究進行展望。土壤中微塑料的來源可分為原位型微塑料和外源輸入型微塑料2種,地下水中的微塑料一般源自于土壤中微塑料的垂直遷移及地表-地下水微塑料交換。水體中微塑料的團聚受多種水環境因素的影響,其團聚程度與遷移能力密切相關,是遷移行為的基礎和前提。土壤-地下水中影響微塑料遷移的因素可分為化學、物理、生物3類。水化學條件、介質成分、水流條件、介質物理條件、植物生長發育、小型動物及微生物的生命活動均會影響土壤-地下水中微塑料的遷移行為,且影響機制各不相同。目前,土壤-地下水中微塑料的遷移研究處于起步階段,在進一步的研究中,野外尺度微塑料遷移、多元化微塑料遷移、微塑料特性對其遷移行為影響、微塑料遷移過程中的轉化等研究值得重點關注。
土壤;地下水;遷移;微塑料;影響因素;影響機制
微塑料(Microplastic)指粒徑小于5 mm的塑料微粒,通常由工業直接生產或大型塑料破解產生[1-2]。近年來,微塑料污染問題在全球范圍引發科研人員的高度關注,成為備受矚目的研究熱點。2016年第二屆聯合國環境大會上,微塑料污染被列入環境與生態領域的第二大科學問題。微塑料不易降解,能夠在環境中長期存在,易對生態環境造成潛在威脅[3-4]。微塑料粒徑可達納米級,環境中納米微塑料通常遷移能力更強,污染范圍更廣,生物毒性更顯著[5]。環境中的微塑料能夠被動物攝食,并通過食物鏈層層富集,最終進入人體,威脅人體健康[6-7]。
中國是塑料垃圾生產和排放大國,農業土壤及相關地下水環境受嚴重的微塑料污染威脅[4,6]。研究微塑料的遷移行為,對于綜合評判及預測其在土壤-地下水中的污染風險具有重要理論意義和實際價值。目前的綜述文章,大多重點闡述土壤和地下水中微塑料的環境行為及生態效應,而對微塑料遷移影響機制的闡述不夠充分。
本文對國內外土壤-地下水中微塑料遷移的現有研究進展進行回顧和總結,分析土壤-地下水中微塑料的可能來源,闡明土壤-地下水中影響微塑料遷移的化學、物理、生物因素,剖析歸納影響微塑料遷移的機制,并對未來研究的發展方向進行展望。
在歐洲和北美國家,每年約有高達數十萬噸微塑料進入農業土壤[8]。中國北方河北、山東等省份的土壤中微塑料豐度可達14.7~158.5個/kg,而云南省部分地區則超過7.1×103個/kg[9]。土壤中微塑料的來源可分為原位型微塑料和外源輸入型微塑料2種。
原位型微塑料主要指土壤中塑料殘余物經風化破解后產生的微塑料。土壤中的塑料殘余物主要為農業生產過程中殘留的農用地膜。中國農用地膜的覆蓋面積和使用量(大于140萬t/a)常年居世界前列,由于回收率較低,大量農用地膜容易殘留在農業土壤中[10-11]。由于具有質輕、料薄、難以生物降解等特性,在長期外界作用影響下,殘留的農用地膜能夠風化破碎成細小的微塑料顆粒,長期存在于土壤環境中,造成微塑料污染。
外源輸入型微塑料指通過大氣沉降、地表徑流、灌溉、肥料施用等過程由外界進入土壤環境的微塑料。研究表明,微塑料廣泛存在于大氣及地表水體中[12-14]。大氣中的微塑料能夠通過降水、降雪等濕沉降過程以及大氣降塵等干沉降過程落于地表,進入土壤及地表水體中[12]。地表水被認為是土壤中微塑料的重要源頭之一。多個歐美國家的淡水湖及河流中均檢測出微塑料污染物,其豐度甚至可超過4×105個/km2[13-14]。中國地表水環境中同樣存在微塑料污染問題,太湖中漂浮微塑料的豐度達1.0×104~6.8×106個/km2[15],而三峽庫區微塑料豐度能達到3.4×106~1.36×107個/km2[16]。地表水中的微塑料,能夠通過地表徑流及農業灌溉等方式直接進入并滯留在土壤中,形成土壤微塑料污染。污水處理過程中產生的污泥富含氮磷等營養成分,常通過堆肥處理被制成農業用肥。研究表明,污水處理雖能有效去除水體中的微塑料,但容易造成大量微塑料在污泥中累積[17-18]。常規污泥預處理方法難以有效去除累積的微塑料,使這些微塑料能夠通過肥料施用進入土壤環境[19]。調查顯示,歐盟國家每年約有4×105t的微塑料通過污泥堆肥進入農業土壤[9]。中國污泥堆肥的使用量呈逐年遞增的趨勢,其造成的土壤微塑料污染不可忽視。
近期,研究人員在地下水中也發現微塑料污染的情況。Panno等[20]發現美國伊利諾伊州巖溶含水層中微塑料豐度最大為15.2個/L,其中大部分為塑料纖維。Mintenig等[21]研究發現德國北部地區的地下水中出現輕度微塑料污染(豐度為0~7個/m3),且檢測出的微塑料均具有較小的粒徑,通常為50~150m。
地下水中微塑料的來源研究較為缺乏,一般認為土壤中微塑料的垂直遷移及地表-地下水交換是地下水中微塑料的重要來源[22-24]。土壤中的微塑料能在生物活動及重力作用下,通過土壤孔隙或生物洞穴進入深部土層,最終侵入地下水環境[25-28]。另一方面,地表水與地下水存在廣泛的溝通和普遍且持續的交換,地表水中的微塑料可能通過水量交換進入地下水環境。Re[29]提出了一種潛在的微塑料遷移機制,即當地表水作為水源補給地下水時,可能為微塑料進入地下水環境提供通道。此外,地下直接排污也可導致污水中的微塑料直接進入含水層,造成地下水微塑料污染。
微塑料在水環境中的團聚與其遷移能力密切相關。微塑料分散穩定性較高的條件下,其在土壤-地下水介質中的遷移能力通常較強;而微塑料容易團聚的條件下,其在土壤-地下水中的遷移則會受到抑制。
研究表明[30-31],水體中分散的微塑料能夠在一定離子強度范圍內(1~100 mmol/L NaCl及0.1~15 mmol/L CaCl2)保持穩定。隨著水環境離子強度的增強,微塑料顆粒之間雙電層被壓縮而變薄,表面電荷被屏蔽,顆粒間靜電斥力減小而易于發生凝聚,穩定性逐漸降低[30-32]。與一價陽離子(例如Na+、K+等)相比,高價陽離子(例如Mg2+、Ca2+、Al3+等)存在條件下微塑料更容易發生團聚。微塑料在水環境中通常顯負電,因此水環境中的高價陽離子能夠吸附在微塑料顆粒表面,降低其表面電勢的絕對值,使其顆粒間靜電斥力減小而更容易發生團聚[30,31-33]。對于表面存在羥基、羧基等官能團的微塑料顆粒,水環境中的高價陽離子可能與上述官能團形成橋鍵,從而鏈接不同的微塑料顆粒,導致其團聚[34]。隨著水環境pH值降低,微塑料表面的官能團逐漸質子化,親水性降低而發生團聚;當pH值升高時,微塑料顆粒表面的官能團去質子化,表面電負性增加,顆粒間靜電排斥力隨之增加而不易發生團聚[35]。溶解性有機質(Dissolved Organic Matter,DOM)富含大量負電荷,可以增加微塑料顆粒之間的空間位阻效應及表面電負性,使得顆粒間空間及靜電排斥作用增強,增強其在水溶液中的穩定性[30-32]。由于DOM富含親水官能團,水環境中的Mg2+、Ca2+離子能夠在DOM分子間形成離子橋鍵,當水環境中Mg2+、Ca2+離子濃度較低時,DOM能夠抑制微塑料的團聚;而當水環境中Mg2+、Ca2+離子濃度較高時,水環境中的DOM反而會促進微塑料的團聚[36]。此外,Oriekhova等[36]發現水環境中膠體物質(Fe2O3、海藻酸鹽等)能夠通過中和表面電荷或增強離子橋鍵作用,影響微塑料的異相團聚行為。另一方面,Long等[37]研究發現,微塑料顆粒能夠富集在水生微生物表面,其穩定性受到微生物生理行為影響。
土壤-地下水中影響微塑料遷移的因素可分為化學、物理、生物3類。表1對土壤-地下水中微塑料遷移的各類影響因素、影響情況及對應影響機制進行總結。
3.1.1 水化學條件
土壤-地下水環境中的離子強度、離子類型、pH、DOM等水化學條件,都是影響微塑料遷移的重要因素。本文繪制了圖1展示DOM及高價陽離子對微塑料在土壤-地下水介質中遷移的影響。
微塑料在土壤-地下水中的遷移能力通常隨離子強度的升高而逐漸降低[38-44]。如上文所述,微塑料顆粒的團聚程度通常隨著離子強度的升高而增強,其團聚體平均粒徑不斷增大,因而更容易受物理過濾作用滯留在土壤-地下水介質中,遷移能力不斷降低。另一方面,隨著離子強度的增加,微塑料顆粒與土壤-地下水介質之間的雙電層會被壓縮變薄,致使二者間的靜電斥力減小,微塑料顆粒更容易沉積在介質表面,遷移能力降低[40-41]。粒徑較小的微塑料在土壤-地下水介質表面的沉積速率通常較低,對離子強度的變化更敏感,其遷移能力更容易受到離子強度的影響[44]。
微塑料的遷移能力通常隨高價陽離子(例如Mg2+、Ca2+、Al3+等)濃度的升高而降低[40,45]。微塑料顆粒在高價陽離子存在時團聚程度較高,因而更容易滯留在土壤-地下水介質中,具有較低的遷移能力(圖1)。此外,水相中的土壤-地下水介質通常呈負電性[42-43,46-47],除微塑料顆粒外,高價陽離子也能夠吸附在土壤-地下水介質表面,導致微塑料顆粒和介質之間的靜電斥力降低,使得微塑料顆粒更容易在介質中沉積,遷移能力下降[40,45]。另一方面,土壤-地下水介質表面通常也存在羥基、羧基等多種官能團,因此高價陽離子能夠在微塑料和介質表面之間形成離子橋鍵,從而增強微塑料在土壤-地下水介質表面的滯留,使其遷移能力降低[40,45]。
微塑料在土壤-地下水中的遷移能力通常隨pH值的升高而增強[48-49]。微塑料團聚程度通常隨pH值的升高而降低,其團聚體平均粒徑隨之下降,因而更容易通過土壤-地下水介質孔隙運移。此外,土壤-地下水環境pH值的變化,能夠引起微塑料及土壤-地下水介質表面官能團電離程度的改變,進而影響微塑料的遷移能力[50]。土壤-地下水介質表面官能團去質子化程度通常隨pH值的升高而增強,使得介質表面負電荷量不斷增加,微塑料顆粒與介質表面之間的靜電斥力增大,因而微塑料顆粒更不容易在介質表面沉積,其遷移能力對應增強[48-49]。

表1 微塑料在土壤-地下水中遷移的影響因素及機制

圖1 溶解性有機質與高價陽離子對微塑料在土壤-地下水介質中遷移的影響
土壤-地下水環境中DOM的存在通常能提高微塑料的遷移能力[41,45]。DOM能通過π-π鍵、氫鍵作用力等機制吸附在土壤-地下水介質表面[47],增強介質的表面電負性。受此影響,微塑料與土壤-地下水介質之間的靜電排斥力增強,沉積量降低,遷移能力提高[41,45]。另一方面,被吸附的DOM可以覆蓋土壤-地下水介質表面微塑料的沉積位點,同時增加微塑料與介質之間的空間位阻效應,降低微塑料的沉積量并提高其遷移能力[41,45]。DOM對微塑料遷移的促進作用會受土壤-地下水環境中其他化學條件的影響。例如,當Mg2+、Ca2+離子存在時,微塑料與土壤-地下水介質表面吸附的DOM容易通過這些高價陽離子形成離子橋鍵,可能造成微塑料遷移能力降低。
此外,Peng等[51]研究發現,土壤-地下水環境中的其他細微顆粒(如氧化石墨烯納米顆粒等)能夠吸附微塑料,并作為載體控制其遷移及沉積行為。土壤-地下水環境中的微塑料還能夠吸附有機物、重金屬等其他污染物,并作為載體對其遷移產生次生影響[32,52-53]。
3.1.2 介質成分
微塑料在不同土壤-地下水介質中的遷移行為往往差異較大,介質成分是影響微塑料遷移的主要因素之一[40,42,54]。Wu等[42]研究了沙壤、黑壤、紅壤3種不同土壤中微塑料的遷移行為,發現微塑料在沙壤及黑壤中具有較高的遷移能力,其穿透率分別高達96.8%和87.5%;而紅壤中的微塑料遷移能力極低,在其試驗條件下微塑料的穿透率均為0。研究表明,土壤中Fe/Al氧化物含量的不同是導致微塑料遷移率差異的關鍵因素[40,42]。微塑料在水相中一般呈負電性,而土壤中的Fe/Al氧化物在水相中一般呈正電性,因而微塑料在遷移過程中能夠在靜電吸引作用下沉積在Fe/Al氧化物表面,其遷移能力降低[40,42]。此外,Fe/Al氧化物表面的Fe或Al離子,還可能與微塑料之間形成陽離子橋鍵,從而增加微塑料的沉積量,降低其遷移能力。土壤中的Fe/Al氧化物含量越高,能夠為微塑料提供的沉積位點越多,微塑料的遷移能力越低。
此外,土壤-地下水介質在pH條件改變或水量更新的條件下可能釋放一定數量的陽離子(Na+、Mg2+、Ca2+及Al3+等),導致陽離子濃度和種類增加[48]。土壤-地下水環境中離子濃度增加會導致離子強度增大,使得微塑料在介質表面的沉積量隨之增加,其遷移能力降低。此外,土壤-地下水環境中陽離子種類增加,可能導致高價陽離子含量增大,從而降低微塑料遷移能力。
3.2.1 水流條件
通常來看,微塑料在土壤-地下水中的遷移能力一般隨孔隙水流速增大而增強。隨著孔隙水流速的增加,微塑料在遷移過程中受到的流體剪應力增強,導致其在土壤-地下水介質表面沉積時間縮短,從而更難在土壤-地下水介質表面沉積,遷移能力顯著提高[49,55-56]。然而,Tong等[49]研究發現,當部分水化學條件利于微塑料顆粒在土壤-地下水介質表面沉積時(如低pH值、高離子強度等),孔隙水流速增大反而增加微塑料在介質表面的沉積量,使其遷移能力降低。
3.2.2 介質物理條件
土壤-地下水介質的物理條件,如介質粒徑、飽和度、非均質性等,也會影響微塑料的遷移行為。本文繪制了圖2展示介質粒徑及水-氣界面對微塑料在土壤-地下水介質中遷移的影響。
微塑料的遷移能力通常隨土壤-地下水介質粒徑的減小而降低[40,57-58]。土壤-地下水介質的粒徑越小,其比表面積越大,介質表面能夠供給微塑料的沉積位點越多,使更多的微塑料能夠在遷移過程中沉積在土壤-地下水介質中,從而具有較低的遷移能力。此外,砂土粒徑越小的土壤-地下水介質通常具有較小的孔喉和滲透率,對微塑料顆粒的物理過濾作用越顯著,使得微塑料具有較低的遷移率(圖2)。另一方面,微塑料的遷移能力可能隨介質粗糙度的升高而降低[40]。與相對光滑的砂土顆粒相比,表面粗糙的砂土顆粒能夠為微塑料提供更多的沉積位點,增加微塑料的沉積量,降低其遷移能力。
微塑料的遷移能力通常隨土壤-地下水介質飽和度的減小而降低。非飽和條件下,土壤-地下水介質中存在大量氣泡[59-61]。Sirivithayapakorn等[59]研究表明,水-氣界面對微塑料存在較高的毛管吸引力,能捕獲水相中遷移的微塑料,使其沉積在水-氣界面處(圖2)。當土壤-地下水飽和度升高,氣泡分解而水-氣界面消失,沉積的微塑料能被重新釋放到水相,隨水流繼續遷移。

圖2 介質粒徑與水-氣界面對微塑料在土壤-地下水介質中遷移的影響
土壤-地下水介質通常具有較強的非均質性,由于構成非均質介質的各土壤組分往往滲透性差異較大,從而使得土壤-地下水介質產生很多優勢通道及優先流。非均質介質優勢通道中的優先流往往流量較高,因而能夠主導微塑料的遷移行為,使微塑料主要通過優勢通道遷移,且這種主導作用通常隨孔隙水流速的增大而更為顯著[62]。
3.3.1 小型動物
小型動物的生命活動是影響微塑料在土壤環境中遷移的重要因素。土壤及土壤孔隙水中的微塑料顆粒可能會附著在小型動物(如蚯蚓、纖毛蟲、線蟲、鞭毛蟲、螨、跳蟲和變形蟲等)的體表,或被小型動物攝食而進入其體內[26,63-67]。這些附著或被攝食的微塑料,能夠隨著小型動物的運動遷移至土壤其他區域,并通過脫落、排泄及死亡等方式滯留在該區域。Huerta等[26]研究表明,微塑料能夠在蚯蚓活動影響下從土壤表層向深部土層遷移,14 d的遷移距離可達約18 cm。Maass等[63]研究發現,不同跳蟲物種影響下微塑料顆粒的遷移情況明顯不同,與等節跳蟲相比,白符跳蟲攜帶微塑料的遷移速率更快,遷移距離更遠。Zhu等[67]研究發現,微塑料顆粒可在土壤跳蟲、螨的活動影響下沿土壤剖面向土層深處遷移,且甲螨對微塑料遷移的促進效果更強。
小型動物在攝食-消化-排泄微塑料的過程中,可能導致微塑料進一步破裂成粒徑更小的顆粒,甚至產生納米級微塑料。Rillig等[8]研究表明,微塑料被蚯蚓攝食后,能夠在其胃囊進一步破碎,形成次生微塑料,并通過排泄過程重新釋放到土壤環境。部分小型動物(如跳蟲、螨等)在攝食微塑料的過程中,其口器也可能通過切斷、咀嚼等行為破碎微塑料顆粒[63]。粒徑越小的微塑料通常越容易受生物擾動影響,具有更強的遷移能力,其在土壤中的遷移范圍也更廣[8,63]。
此外,小型動物活動所形成的孔洞、挖掘類哺乳動物造成的洞穴、植物根系發育導致的土壤裂隙能夠提供優勢通道,使得微塑料顆粒更容易在自身重力作用下由土壤表層向深部土層遷移[28,68]。
目前研究普遍認為,微塑料顆粒在土壤中的縱向遷移是地下水中微塑料污染物的重要來源之一[24]。
3.3.2 微生物
除小型動物外,土壤-地下水介質中往往還存在大量微生物,對微塑料的遷移產生影響[69-70]。當土壤-地下水介質表面附著銅綠假單胞菌()、乳酸菌()等細菌時,遷移過程中的微塑料可能會附著在這些細菌表面,或被細菌吞噬而進入其體內,導致微塑料的沉積量增加,遷移能力降低[69-70]。細菌的生長基質及分泌的胞外聚合物能夠改變土壤-地下水介質的表面性質,從而影響微塑料的遷移能力[70]。Tripathi等[70]研究表明,細菌的生長基質能夠吸附在土壤-地下水介質表面,掩蔽微塑的料沉積位點,降低微塑料的沉積量,從而提高其遷移能力。相反,細菌分泌的胞外聚合物可能使土壤-地下水介質的表面電負性減小,從而降低微塑料與土壤-地下水介質間的靜電排斥作用,增加其沉積量,使其遷移能力下降。不同種類的微生物具有不同的細胞表面疏水性,這種差異往往會對微塑料的遷移產生影響,從而影響微塑料在介質表面的沉積和遷移行為[69]。Mitzel等[69]研究表明,親水性生物膜存在時,離子強度誘導微塑料沉積在土壤-地下水介質表面的作用更顯著,使得高離子強度條件下微塑料的遷移能力更低。土壤-地下水環境中離子強度的改變,通常不會影響疏水性微生物對微塑料的截留,但會導致親水性微生物對微塑料的截留發生變化[69]。可見,土壤-地下水介質表面的微生物及孔隙水化學條件通常對微塑料在介質中的滯留產生耦合影響,這使得微塑料在土壤-地下水介質中的遷移行為變得更為復雜。
綜上所述,微塑料在土壤-地下水中的遷移受多種化學、物理及生物因素影響,且影響機制各不相同。土壤-地下水中微塑料的遷移能力通常隨離子強度、高價陽離子濃度、介質Fe/Al氧化物含量、介質表面陽離子釋放量、介質粗糙度的升高而降低;隨pH值、溶解性有機質濃度、孔隙水流速、介質粒徑、介質飽和度的升高而增強。此外,植物生長發育、小型動物及微生物的生命活動也會對土壤-地下水中微塑料的遷移行為產生影響。
目前,土壤-地下水中微塑料的遷移、轉化、歸趨等問題也日漸受到眾多科研人員的重視。然而,土壤-地下水中微塑料的遷移研究正處于起步階段,尚未形成完整全面的知識體系。在進一步的研究中,以下幾方面問題值得重點關注:
1)野外尺度微塑料遷移研究。目前土壤-地下水中微塑料的遷移研究大多通過小尺度室內試驗進行,盡管室內試驗能很好地闡明各類因素對微塑料遷移的影響機制,但很難反映真實土壤-地下水環境的復雜性,因此野外尺度的塑料遷移研究亟需開展。建議通過野外Lysimeter試驗,對微塑料的環境歸趨進行定量化研究。
2)多元化微塑料遷移研究。目前研究大多采用工業聚苯乙烯微球(模式微塑料)作為目標對象,難以全面概括環境中真實存在的微塑料,亟需對多元化微塑料在土壤-地下水中的遷移行為開展研究。
3)微塑料特性對其遷移影響研究。細微顆粒的自身特性(如粒徑、表面性質、密度等)通常會對其遷移行為產生較大影響,而目前基于微塑料自身性質開展的遷移研究較少,未來應推進該領域發展。
4)微塑料遷移過程中的轉化研究。微塑料的來源之一是環境中大型塑料垃圾的次生產物,其在遷移過程中可能受到多種條件的影響而進一步破裂分解,并釋放塑化劑等有毒物質,導致其基本理化性質發生改變,并對環境造成潛在危害,因此微塑料在土壤-地下水遷移過程中的轉化行為也亟待探明。
[1] Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145.
[2] 鄧義祥,雷坤,安立會,等. 我國塑料垃圾和微塑料污染源頭控制對策[J]. 中國科學院院刊,2018,33(10):1042-1051. Deng Yixiang, Lei Kun, An Lihui, et al. Countermeasurces on control of plastic litter and microplastic pollution[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1042-1051. (in Chinese with English abstract)
[3] 馬乃龍,程勇,張利蘭. 微塑料的生態毒理效應研究進展及展望[J]. 環境保護科學,2018,44(6):117-123. Ma Nailong, Cheng Yong, Zhang Lilan, et al. Research progress and prospect of ecotoxicological effects of microplastic[J]. Environmental Protection Science, 2018, 44(6): 117-123. (in Chinese with English abstract)
[4] 王彤,胡獻剛,周啟星. 環境中微塑料的遷移分布、生物效應及分析方法的研究進展[J]. 科學通報,2018,63(4):385-395. Wang Tong, Hu Xiangang, Zhou Qixing. The research progress in migration, distribution, biological effects and analytical methods of microplastics[J]. Chinese Science Bulletin, 2018, 63(4): 385-395. (in Chinese with English abstract)
[5] 楊婧婧,徐笠,陸安祥,等. 環境中微(納米)塑料的來源及毒理學研究進展[J]. 環境化學,2018,37(3):383-396. Yang Jingjing, Xu Li, Lu Anxiang, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3): 383-396. (in Chinese with English abstract)
[6] Bouwmeester H, Hollman P C H, Peters R J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 49(15): 8932-8947.
[7] 駱永明,周倩,章海波,等. 重視土壤中微塑料污染研究防范生態與食物鏈風險[J]. 中國科學院院刊,2018,33(10):1021-1030. Luo Yongming, Zhou Qian, Zhang Haibo, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030. (in Chinese with English abstract)
[8] Rillig M C. Microplastic in terrestrial ecosystems and the soil[J]. Environmental Science & Technology, 2012, 46(12): 6453-6454.
[9] 侯軍華,檀文炳,余紅,等. 土壤環境中微塑料的污染現狀及其影響研究進展[J]. 環境工程,2020,38(2):16-27,15. Hou Junhua, Tan Wenbing, Yu Hong, et al. Microplastics in soil ecosystem: A review on sources, fate, and ecological[J]. Environmental Engineering, 2020, 38(2): 16-27, 15. (in Chinese with English abstract)
[10] 靳拓,薛穎昊,張明明,等. 國內外農用地膜使用政策、執行標準與回收狀況[J]. 生態環境學報,2020,29(2):411-420. Jin Tuo, Xue Yinghao, Zhang Mingming, et al. Research advances in regulations, standards and recovery of mulch film[J]. Ecology and Environmental Sciences, 2020, 29(2): 411-420. (in Chinese with English abstract)
[11] 彭訓廣,王彩虹,孫力,等. 農用薄膜對土壤污染現狀、原因與治理對策[J]. 價值工程,2010,29(4):83. Peng Xunguang, Wang Caihong, Sun Li, et al. The current situation and reasons of soil pollution from the agriculture plastic film and its coping strategies[J]. Value Engineering, 2010, 29(4): 83. (in Chinese with English abstract)
[12] Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment[J]. Marine Pollution Bulletin, 2016, 104: 290-293.
[13] Eerkes-Medrano D, Thompson R C, Aldridge D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 2015, 75: 63-82.
[14] Rezania S, Park J, Din M F M, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies[J]. Marine Pollution Bulletin, 2018, 133: 191-208.
[15] Su Lei, Xue Yingang, Li Lingyun, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719.
[16] Zhang Kai, Gong Wen, Lv Jizhong, et al. Accumulation of floating microplastics behind the Three Gorges Dam[J]. Environmental Pollution, 2015, 204: 117-123.
[17] Mintenig S M, Int-Veen I, Loeder M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372.
[18] Mason S A, Garneau D, Sutton R, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218: 1045-1054.
[19] Mahon A M, O'Connell B, Healy M G, et al. Microplastics in sewage sludge: Effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818.
[20] Panno S V, Kelly W R, Scott J, et al. Microplastic contamination in Karst groundwater systems[J]. Groundwater, 2019, 57(2): 189-196.
[21] Mintenig S M, Loeder M G J, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635.
[22] Yao Liming, Hui Li, Yang Zhuang, et al. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II[J]. Chemosphere, 2020, 245: 125627.
[23] Koelmans A A, Nor N H M, Hermsen E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality[J]. Water Research, 2019, 155: 410-422.
[24] 蒲生彥,張穎,呂雪. 微塑料在土壤-地下水中的環境行為及其生態毒性研究進展[J]. 生態毒理學報,2020,15(1):44-55. Pu Shengyan, Zhang Ying, Lv Xue. Review on the environmental behavior and ecotoxicity of microplastics in soil-groundwater[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 44-55. (in Chinese with English abstract)
[25] Qi Ruimin, Jones D L, Li Zhen, et al. Behavior of microplastics and plastic film residues in the soil environment: A critical review[J]. Science of the Total Environment, 2020, 703: 134722.
[26] Huerta Lwanga E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531.
[27] 劉治君,楊凌肖,王瓊,等. 微塑料在陸地水環境中的遷移轉化與環境效應[J]. 環境科學與技術,2018,41(4):59-65,90. Liu Zhijun, Yang Lingxiao, Wang Qiong, et al. Migration and transformation of microplastics in terrestrial waters and effects on eco-environment[J]. Environmental Science & Technology, 2018, 41(4): 59-65, 90. (in Chinese with English abstract)
[28] 任欣偉,唐景春,于宸,等. 土壤微塑料污染及生態效應研究進展[J]. 農業環境科學學報,2018,37(6):1045-1058. Ren Xinwei, Tang Jingchun, Yu Chen, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems[J]. Journal of Agro-Environment Science, 2018, 37(6): 1045-1058. (in Chinese with English abstract)
[29] Re V. Shedding light on the invisible: Addressing the potential for groundwater contamination by plastic microfibers[J]. Hydrogeology Journal, 2019, 27(7): 2719-2727.
[30] Cai Li, Hu Lingling, Shi Huahong, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142-151.
[31] Li Shuocong, Liu Hong, Gao Rui, et al. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter[J]. Environmental Pollution, 2018, 237: 126-132.
[32] Liu Jin, Ma Yini, Zhu Dongqiang, et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain[J]. Environmental Science & Technology, 2018, 52(5): 2677-2685.
[33] Lu Songhua, Zhu Kairuo, Song Wencheng, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951-959.
[34] Oncsik T, Trefalt G, Csendes Z, et al. Aggregation of negatively charged colloidal particles in the presence of multivalent cations[J]. Langmuir, 2014, 30(3): 733-741.
[35] Jodar-Reyes A B, Ortega-Vinuesa J L, Martin-Rodriguez A. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants[J]. Journal of Colloid and Interface Science, 2006, 297(1): 170-181.
[36] Oriekhova O, Stoll S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter[J]. Environmental Science-Nano, 2018, 5(3): 792-799.
[37] Long M, Paul-Pont I, Hegaret H, et al. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation[J]. Environmental Pollution, 2017, 228: 454-463.
[38] Xu Shuang, Qi Jun, Chen Xijuan, et al. Coupled effect of extended DLVO and capillary interactions on the retention and transport of colloids through unsaturated porous media[J]. Science of the Total Environment, 2016, 573: 564-572.
[39] Alimi O S, Budarz J F, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, Deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
[40] Quevedo I R, Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand[J]. Environmental Science & Technology, 2012, 46(8): 4449-4457.
[41] Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media[J]. Journal of Colloid and Interface Science, 2008, 321(1): 74-83.
[42] Wu Xiaoli, Lyu Xueyan, Li Zhengyu, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 2020, 707: 136065.
[43] Chu Xianxian, Li Tiantian, Li Zhen, et al. Transport of microplastic particles in saturated porous media[J]. Water, 2019, 11(12): 2474.
[44] May R, Li Yusong. The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2013, 418: 84-91.
[45] Franchi A, O'Melia C R. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media[J]. Environmental Science & Technology, 2003, 37(6): 1122-1129.
[46] Dong Shunan, Shi Xiaoqing, Gao Bin, et al. Retention and release of graphene oxide in structured heterogeneous porous media under saturated and unsaturated conditions[J]. Environmental Science & Technology, 2016, 50(19): 10397-10405.
[47] Dong Shunan, Sun Yuanyuan, Gao Bin, et al. Retention and transport of graphene oxide in water-saturated limestone media[J]. Chemosphere, 2017, 180: 506-512.
[48] Sadri B, Pernitsky D, Sadrzadeh M. Aggregation and deposition of colloidal particles: Effect of surface properties of collector beads[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 530: 46-52.
[49] Tong Meiping, Johnson W P. Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity[J]. Environmental Science & Technology, 2006, 40(24): 7725-7731.
[50] Wang Mei, Gao Bin, Tang Deshan. Review of key factors controlling engineered nanoparticle transport in porous media[J]. Journal of Hazardous Materials, 2016, 318: 233-246.
[51] Peng Shengnan, Wu Dan, Ge Zhi, et al. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media[J]. Environmental Pollution, 2017, 225: 141-149.
[52] Cai Li, Peng Shengnan, Wu Dan, et al. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand[J]. Environmental Pollution, 2016, 208: 637-644.
[53] Wang Fen, Wong C S, Chen Da, et al. Interaction of toxic chemicals with microplastics: A critical review[J]. Water Research, 2018, 139: 208-219.
[54] Bouchard D, Zhang Wei, Chang Xiaojun. A rapid screening technique for estimating nanoparticle transport in porous media[J]. Water Research, 2013, 47(12): 4086-4094.
[55] Zhang Qiulan, Raoof A, Hassanizadeh S M. Pore-scale study of flow rate on colloid attachment and remobilization in a saturated micromodel[J]. Journal of Environmental Quality, 2015, 44(5): 1376-1383.
[56] Wu Lei, Gao Bin, Munoz-Carpena R, et al. Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow[J]. Environmental Science & Technology, 2012, 46(16): 8878-8886.
[57] Bradford S A, Yates S R, Bettahar M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 1327.
[58] Bradford S A, Bettahar M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1-2): 99-117.
[59] Sirivithayapakorn S, Keller A. Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface[J]. Water Resources Research, 2003, 39(12): 1346.
[60] Hoggan J L, Sabatini D A, Kibbey T C G. Transport and retention of TiO2and polystyrene nanoparticles during drainage from tall heterogeneous layered columns[J]. Journal of Contaminant Hydrology, 2016, 194: 30-35.
[61] Zhuang Jie, Qi Jun, Jin Yan. Retention and transport of amphiphilic colloids under unsaturated flow conditions: Effect of particle size and surface property[J]. Environmental Science & Technology, 2005, 39(20): 7853-7859.
[62] Morales V L, Parlange J Y, Steenhuis T S. Are preferential flow paths perpetuated by microbial activity in the soil matrix: A review[J]. Journal of Hydrology, 2010, 393(1-2): 29-36.
[63] Maass S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225: 456-459.
[64] Kiyama Y, Miyahara K, Ohshima Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans[J]. Journal of Experimental Biology, 2012, 215(7): 1178-1183.
[65] Zhu Dong, Bi Qingfang, Xiang Qian, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154.
[66] Rillig M C, Bonkowski M. Microplastic and soil protists: A call for research[J]. Environmental Pollution, 2018, 241: 1128-1131.
[67] Zhu Dong, Chen Qinglin, An Xinli, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology & Biochemistry, 2018, 116: 302-310.
[68] 劉沙沙,付建平,郭楚玲,等. 微塑料的環境行為及其生態毒性研究進展[J]. 農業環境科學學報,2019,38(5):957-969. Liu Shasha, Fu Jianping, Guo Chuling, et al. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 2019, 38(5): 957-969. (in Chinese with English abstract)
[69] Mitzel M R, Sand S, Whalen J K, et al. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand[J]. Water Research, 2016, 92: 113-120.
[70] Tripathi S, Champagne D, Tufenkji N. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm[J]. Environmental Science & Technology, 2012, 46(13): 6942-6949.
Review on impact factors and mechanisms of microplastic transport in soil and groundwater
Dong Shunan, Xia Jihong, Wang Weimu, Liu Hui, Sheng Liting
(,210098,)
Microplastic (the small plastic with the diameter lower than 5 mm) has been widely detected in soil and groundwater worldwide, which draws high attention of researchers and publics as an emerging contaminant. For better predicting and evaluating the environmental risk of microplastic in soil and groundwater environment, mechanism studies focus on microplastic transport are necessary. Nevertheless, transport and retention processes of microplastic in soil and groundwater environment are far from comprehensively known, which should receive more attention. This review summarized the current studies of microplastic source, aggregation, and transport in soil and groundwater environment. Important chemical, physical and biotic factors affecting microplastic transport in soil and groundwater environment were detailly identified and analyzed. The main chemical factors were the hydrochemical condition (e.g. ionic strength, electrolyte type, pH value and dissolved organic matter) and media chemical composition (e.g. Fe/Al oxide ratio and cation release). The main physical factors were the solution flow condition (e.g. flow rate) and media physical composition (e.g. grain size, surface roughness, saturation and heterogeneity). The main biotic factors were the plants (e.g. root development), small soil animals (e.g. movement and ingestion), and microorganisms (e.g. vital activity and basic property). The aggregation of microplastic in water environment was improved with increasing ionic strength, decreasing pH value and dissolved organic matter concentration, and the presence of high valent cations. The transport of microplastic in soil and groundwater environment was enhanced with increasing pH value, media grain size, flow rate and moisture content, however, it was inhibited with increasing ionic strength, surface roughness and electrolyte valence. With the presence of dissolved organic matter, the mobility of microplastic was significantly increased. Microplastic showed a low mobility in porous media containing the high amount of Fe/Al oxide. The transport of microplastic was also decreased if the porous media released cations into aqueous phase. In addition, preferential flow generated in structured heterogeneous media may dominate the transport of microplastic. Root growth and development produced cracks and holes in soils, providing preferential channels for microplastic to vertically migrate. Small soil animals (e.g. earthworms and collembolans) may capture, ingest or carry microplastic and influence its transport behavior subsequently. Microorganisms (e.g. bacteria and algae) living on the surface of porous media may capture or adsorb moving microplastic, which then may increase the retention and decrease the transport of microplastic in soil and groundwater environment. The related impact mechanism of the factors mentioned above were systematically discussed and visually illustrated by schematic diagrams. At the end of this review, current knowledge gaps and prospective topics needed to be promoted were highlighted for further developing and investigating the fate and transport of microplastic in soil and groundwater environment. Given current researches were almost limited to laboratory scale and polystyrene microsphere, field researches (e.g. lysimeter experiments), diversified type, the basic property and transform researches should be emphasized on in future microplastic transport studies. This review contributes to expanding our knowledge of fate and transport of microplastics in soil and groundwater environment.
soils; groundwater; transport; microplastic; impact factors; impact mechanism
董姝楠,夏繼紅,王為木,等. 土壤-地下水中微塑料遷移的影響因素及機制研究進展[J]. 農業工程學報,2020,36(14):1-8. doi:10.11975/j.issn.1002-6819.2020.14.001 http://www.tcsae.org
Dong Shunan, Xia Jihong, Wang Weimu, et al. Review on impact factors and mechanisms of microplastic transport in soil and groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 1-8. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.001 http://www.tcsae.org
2020-05-24
2020-06-20
國家重點研發計劃專項(2018YFD0900805);國家自然科學基金(41907160);中央高校基本科研業務費(B200202098)
董姝楠,博士,講師,主要從事農業環境污染及高效修復技術研究。Email:dsn@hhu.edu.cn
10.11975/j.issn.1002-6819.2020.14.001
X592;X53
A
1002-6819(2020)-14-0001-08