張 毅,陳 潔,汪 磊,付俊輝
加水量與和面時間對面片質構及蛋白特性的影響
張 毅1,陳 潔1※,汪 磊1,付俊輝2
(1. 河南工業大學糧油食品學院,鄭州 450001;2. 啟明軒程控設備有限公司,登封 452470)
為研究加水量對不同和面時間下面片質構及蛋白特性的影響,該研究采用質構儀、傅里葉紅外光譜儀和高效液相色譜儀分別探究面片質構、二級結構和蛋白含量的變化,同時對面片色澤、巰基含量進行測定。結果顯示隨著加水量的增加,面片的拉伸力與硬度呈下降趨勢,延展性與黏性呈上升趨勢,面片亮度(*)值和紅-綠(*)值升高。加水量為40%時,蛋白質二級結構中穩定型的-折疊與-螺旋含量較高,巰基、大分子量聚合體蛋白含量較低,面片綜合質構特性較好,有利于高水分含量面制食品的生產。不同加水量下,和面時間對面片質構及蛋白特性的影響不同。和面15 min時,面片延展性較好,拉伸力、硬度適中,黏性、巰基含量較低,-折疊含量較高,適度的和面時間能夠促進面片面筋網絡的形成,有利于提高面片的品質特性。
質構;蛋白;加水量;和面時間;面片
和面過程中加水量對產品的感官品質、理化性質及質構特性會產生重要影響,合適的加水量可以顯著改善面制品的品質。加水量過高,形成的面團過于松軟,不易壓制成面片;加水量過低,面筋中的蛋白質不能充分接觸到水分,從而不能吸水膨脹,面筋的形成程度低[1]。和面時間的控制對面片的性質也有很大的影響。和面時間不足,面片內部組織粗糙,顆粒較多,結構不均勻,面片表面有干粉;和面時間過長,面片表面過于濕黏,面片過于軟化,極不利于面片整形操作[2]。在面片制作過程中,面片水分含量與面粉成片后本身蛋白質的性質緊密相關,對面制品的結構、產品質量有著很大的影響[3]。艾宇薇[4]的研究表明加水量對面團的質構特性具有一定的影響;劉銳等[5-6]研究了不同和面時間對面團水分分布的影響變化;葉一力等[7]研究表明不同加水量對白面條品質具有極大影響。但尚未有將加水量與和面時間結合起來針對面片的研究,本文以小麥面片為研究對象,研究加水量對不同和面時間面片的影響,采用質構儀、傅里葉紅外光譜儀和高效液相色譜儀對小麥面片的質構特性、二級結構、蛋白含量進行表征,并對面片色澤、巰基含量進行測定,以期揭示加水量與和面時間對面片品質的影響規律,為面制品的生產加工提供理論依據。
特一粉(質量分數分別為:水分13.6%、灰分0.48%、脂肪1.57%、濕面筋33%、蛋白質11.11%),鄭州金苑面業有限公司;溴化鉀,磷酸二氫鈉,磷酸氫二鈉,甘氨酸,天津市科密歐化學試劑有限公司;鹽酸,洛陽昊華化學試劑有限公司;鹽酸胍和脲,國藥集團試劑有限公司;三羥甲基氨基甲烷,北京益利精細化學品有限公司。
B5A多功能攪拌機,廣州市威力事實業有限公司;WQF-510型傅里葉紅外光譜儀,北京銳利分析儀器公司;TU-1810紫外可見分光光度計,北京普析通用儀器有限責任公司;TA-XT Plus型質構儀,英國STABLE MICRO SYSTEM公司;Waters 1525高效液相色譜儀,美國Waters公司;Zemix SEC-300凝膠色譜柱,蘇州賽分科技有限公司。
1.3.1 小麥面片質構特性測試
面片的制備:稱取200 g特一粉于多功能攪拌機中,分別加入30%、35%、40%、45%、50%(質量分數)的水,分別攪拌10、15、20 min后制成面團,放入25 ℃醒發箱里醒發15 min[8],面團醒發后復合壓延成3 mm厚面片。
1)拉伸特性測試
待面片靜置5 min使其應力松弛后,用模具制成長條,放于TA-XT Plus質構儀上采用A/KIE探頭測試拉伸特性,參考陳潔等[9]方法。
2)硬度測試
參考劉長虹等[10-11]的方法并略作修改。將面片切成直徑為10 mm的圓面片,放于質構儀上采用P/35探頭測試硬度。
3)黏性測試
按照上文中的步驟制成直徑10 mm圓面片,放于質構儀上采用P/25探頭測試黏性。測試條件:測前速度0.5 mm/s,測試速度0.5 mm/s,測后速度10.0 mm/s,應變力40.0 g,返回距離4.0 mm,接觸時間0.1 s,引發類型為自動,引發力5.0 g。
4)面片色澤測試
色差儀校準后,面片放于校準板上進行測定,重復測定3次,參考范會平等[12]的方法。
1.3.2 小麥蛋白特性測試
1)巰基含量測試
將面片真空冷凍干燥12 h,磨粉,過74m(200目)篩。用比色法測定巰基含量,重復測定3次,具體操作參照羅明江等[13]方法。
2)二級結構測試
參考Zhan[14-15]的方法,并略作修改。稱取5 mg凍干粉試樣與溴化鉀研磨混合均勻,壓至成片,進行傅里葉紅外光譜掃描。對1 600-1~1 700 cm-1段圖譜進行高斯去卷積和二階求導,計算各二級結構的含量,重復測定3次。
3)蛋白質分子量測試
參考Guo等[16]的方法,并略作修改。取10 mg凍干粉試樣,加入10 mL 2 g/L SDS-0.5 mol/L磷酸鈉緩沖液(pH值 6.8),漩渦振蕩超聲混和均勻,8 000 ×離心15 min。上清液過0.45m濾膜,重復提取2次,每個上清液重復測定3次。
色譜條件參照Hou等[17]方法并略有修改:流動相2 g/L SDS-0.5 mol/L磷酸鈉緩沖液(pH值6.8),流速0.7 mL/min,進樣量30L;采用紫外檢測器,檢測波長214 nm。采用標準蛋白[18-19]:甲狀腺球蛋白(670 000 Da)、-球蛋白(150 000 Da)、清蛋白(44 300 Da)、核糖核酸酶A(13 700 Da)。根據洗脫蛋白的分子量,將色譜圖分為4個部分,計算吸收峰面積和面積百分比。
采用Origin 8.0軟件進行圖表制作,并用SPSS 21.0軟件對數據進行顯著性差異分析處理,以<0.05為顯著性標準。
2.1.1 拉伸特性分析
面片的拉伸特性綜合表現為面片的彈性和延展性[20],如圖1所示和面時間以及加水量都對面片的拉伸特性產生了影響。圖1 a中,在同一和面時間下,隨著加水量的增加,面片所能承受的拉伸力越小。加水量30%時面粉不能充分吸水,面筋蛋白不能充分水合,此時面片粗糙且硬度較大,瞬間拉斷力強;隨著加水量的增加,面粉吸水均勻,面筋蛋白充分水合,面團形成良好,壓成的面片抗拉伸能力逐漸增強;加水量50%時,面粉中的淀粉游離出面筋網絡,面片韌性、彈性降低,抗拉伸能力減弱。不同和面時間對面片拉伸力影響的規律較復雜,加水量不同時,和面時間對面片拉伸力的影響也不同。加水量35%時,和面時間越長面片拉伸力越大;加水量40%時,和面15 min面片拉伸力最大;加水量45%時,面片拉伸力隨著和面時間的延長而減小。加水量低時,面筋網絡擴展較慢,延長和面時間,可以使面團揉和充分,面片拉伸性增強。較長的和面時間可以使水分更均勻的分布,淀粉和蛋白質充分裹挾水分子,面筋網絡擴展促使面團的形成。如果加水量高,而且攪拌時間過長,面筋網絡被打斷,面團中的水分子容易滲出,從而出現表面水化現象,此時壓出的面片拉伸性降低[21]。

注:圖中不同小寫字母表示P<0.05 水平上差異顯著,下同。
如1 b圖所示,隨著加水量的增加,面片的拉伸距離先增大后減小。面片的拉伸距離,反映面片的延展性,其與面筋網絡形成程度有關。攪拌適度,面粉吸水均勻時,面筋網絡擴展形成良好,面片延展性良好,拉伸距離越大[22]。從圖1 b中可以看出,在加水量為45%時,拉伸距離較大,此時面筋網絡形成良好,面片不干燥,水分分布均勻。加水量增加到50%時,由于水分不能被完全吸收,導致面片過于黏濕,極易拉扯變形,拉伸距離顯著低于45%時。和面時間對面片拉伸距離的作用,在低加水量30%、35%時無顯著影響;在加水量40%、45%、50%,和面時間為15 min時的拉伸距離最大,且顯著高于10 min和20 min。適度的攪拌使面片二硫鍵維持在較高水平,有益于面筋網絡的交聯以及對淀粉的包裹,面片柔軟,從而提高面片的彈性、韌性和延展性[23-24]。
2.1.2 硬度分析
從圖2中可以看出,隨著和面加水量的增加,面片的硬度呈下降趨勢,與2.1.1中拉伸力變化相同。加水量改變,拉伸力與硬度都有顯著變化,這與水分子充分浸入面筋蛋白,促使蛋白質水合,形成相互黏連的面筋網絡有關[25]。和面時間對面片硬度的影響在加水量45%時尤其顯著:和面至10 min,面筋蛋白大量吸水形成面筋,部分淀粉吸水溶脹,但是由于未吸水淀粉的存在,以及面筋網絡尚未得到充分擴展,所以壓成的面片柔韌性差,質地較硬[21];和面至15 min,面筋大量形成,并得到充分擴展,淀粉充分吸水并均勻分布于面筋網絡之間,壓成的面片柔軟有韌性,硬度降低;和面至20 min,超過面團攪拌耐度,部分面筋被打斷,水分子析出,面團變黏變軟,壓出的面片難以成型且極易粘輥。

圖2 加水量與和面時間對面片硬度的影響
2.1.3 黏性分析
從圖3中可以看出,隨著和面加水量的增加,面片的黏性在不同和面時間下的變化是不同的:和面10和15 min時,面片黏性隨加水量的增加呈現先上升后下降的趨勢;和面20 min時,面片黏性隨加水量的增加呈現不斷上升趨勢。面片是一種黏彈性體,既表現彈性又表現黏性[26]。加水量越高,淀粉分子與面筋蛋白吸水越充分,面片黏性增強,但是當加水量過高時,水分不能被完全吸收,殘留于面片表面的水分子改變面片的黏性。面筋蛋白和淀粉處于吸水飽和狀態,過多的水分子存在于蛋白質-蛋白質、蛋白質-淀粉顆粒之間起到減弱分子間作用力的效果從而致使面片黏性下降[27]。不同加水量情況下,和面10和15 min的面片黏性無顯著差異(>0.05);和面20 min的面片黏性顯著高于10、15 min(<0.05),說明和面時間過長,超過了面團的攪拌耐度,部分面筋網絡被打斷,游離出自由水,致使壓出的面片黏性顯著增加,此時面片的質構特性變差。
結合2.1.1和2.1.2節的研究發現加水量30%時,面片硬度高,延展性差、黏性低;加水量35%~45%時,面片延展性好、黏性高,抗拉伸性強、硬度較低;加水量50%時,面片拉伸性差,硬度低,黏性較好。
2.1.4 色澤分析
如表1所示,隨著加水量的增加,面片的*(亮度:正為偏白,負為偏黑)值和*(紅-綠:正為偏紅,負為偏綠)值在不斷增加,而*(黃-藍:正為偏黃,負為偏藍)值呈現先減小再增大再減小的趨勢。和面過程中加水量越多,面片越發白,*值越大,這是因為淀粉和蛋白質完全與水發生了反應,形成的面片對光具有一定的折射作用。另外,面粉是一種混合物質,含有的多酚氧化酶可以催化多酚類物質發生褐變,水是其反應的重要介質。加水量少時,多酚氧化酶活性低,催化速率慢;加水量過高時則會對多酚氧化酶產生稀釋作用,催化速率下降[4]。加水量35%~45%時,和面過程中,水分子滲入面粉體系,酶促褐變發生,加水量越多,面片褐變越嚴重,從而*值越大。但是,當加水量達到50%時面片的*值將會顯著下降,褐變減緩。然而,加水量30%時面片中由于摻雜部分干面粉,所以*值將大于加水量高時。和面時間不同,面片色澤變化在加水量不同情況下無明顯規律。但是,由于攪拌時間長短不同,面團形成時裹挾氧氣的量也將影響面片褐變的發生。

圖3 加水量與和面時間對面片黏性的影響

表1 加水量與和面時間對面片色澤變化的影響
注:表中同一列不同小寫字母表示<0.05 水平上差異顯著,下同。
Note: Different lowercase letters in the same column in the table indicate significant difference at the level of< 0.05, the same below.
2.2.1 巰基含量分析
和面過程中會發生二硫鍵和巰基的轉化,二硫鍵是連接兩個高分子量麥谷蛋白形成聚合體的化學鍵,在二硫鍵的參與下面筋蛋白交聯成面筋網絡“骨架”,并表現出一定的彈性[28-29]。如圖4所示,隨著加水量的增加巰基含量呈現先下降后上升的趨勢,在加水量40%時達到最低值。加水量從30%增加到40%,巰基含量逐漸下降,表明水分子促進巰基轉化為二硫鍵。在面片中帶有巰基的谷氨酰胺和半胱氨酸都是極性氨基酸,具有良好的水分子吸附能力,能夠促進面筋蛋白吸水漲潤[30-31],并且水分子中裹挾的氧分子能夠促使巰基轉化為二硫鍵[32]。加水量為45%~50%時,巰基含量升高即二硫鍵含量下降。這是因為水分子達到蛋白吸收的飽和度時,水中的氧氣不再對巰基和二硫鍵的轉化產生影響,反而由于過多的水減弱疏水作用導致二硫鍵向巰基轉化[33]。

圖4 加水量與和面時間對巰基含量的影響
分析和面時間對巰基含量的影響,發現和面15 min時巰基含量最低,此時二硫鍵含量最高,面筋蛋白相互交聯最好。10、20 min時巰基含量普遍高于15 min,前者是因為和面時間較短,面團揉和不足,面筋形成不充分,面片中巰基未能及時轉化為二硫鍵;后者是因為和面時間太長,攪拌過度,破壞了已經形成的二硫鍵,致使二硫鍵再還原為巰基。
2.2.2 二級結構分析
如表2所示,隨著加水量的增加,-螺旋,-折疊的含量呈現先增加后減小的趨勢,-轉角含量變化與之總體相反。在面片的蛋白質二級結構中,-螺旋、-折疊占有很大的比例。-螺旋、-折疊與面筋網絡結構的有序性有關,主要通過分子間氫鍵維持其結構[28]。從表中可以看出,加水量為30%、50%時,-螺旋含量明顯低于中間加水量下的含量。在一定范圍內,加水量越高,面筋網絡形成越充分,具有良好的結構,蛋白質交聯排列有序,蛋白質分子鏈的-螺旋和-折疊結構含量相對較高,進而表明蛋白質分子間的氫鍵作用增強[15]。當加水量過高,水分子的稀釋作用,促進蛋白質分子伸展過度從而破壞-螺旋穩定構象,所以適當的加水量將有利于蛋白質分子的穩定。加水量40%時蛋白質二級結構-螺旋和-折疊都處于較高含量。和面時間對蛋白質二級結構具有重要影響。如表2所示,加水量為30%、35%、45%,和面時間為10 min,蛋白質無規則卷曲含量高于15 min。和面時間不足,蛋白質分子間氫鍵作用削弱,面筋網絡得不到伸展,無序結構無規則卷曲的含量將升高。加水量40%~50%,和面15 min時-折疊含量高于20 min,而-轉角含量則低于20 min。和面時間過長,形成的氫鍵再次被打斷,蛋白質分子結構遭到破壞,穩定型的二級結構-折疊含量降低,所以適度的和面時間是形成良好面團面片的關鍵因素[34]。

表2 加水量與和面時間對蛋白質二級結構含量的影響
2.2.3 蛋白質分子量分析
根據蛋白質分子量的大小,經過高效液相色譜分析出4類蛋白質:大分子量聚合體蛋白和小分子量聚合體蛋白主要是SDS可溶性麥谷蛋白、大分子量單體蛋白主要是醇溶蛋白和小分子量單體蛋白主要是清蛋白和球蛋白[5]。如表3所示,加水量對各類蛋白含量的影響:隨著加水量的增加,大分子量聚合體蛋白和小分子量聚合體蛋白含量總體上呈現先下降后上升的趨勢,大分子量單體蛋白和小分子量單體蛋白含量呈現先上升后下降的趨勢。色譜分析前,樣品用SDS(十二烷基硫酸鈉)蛋白變性劑處理,分離出SDS可溶性麥谷蛋白與SDS不可溶性麥谷蛋白大聚體。麥谷蛋白形成大聚體主要是由二硫鍵連接維持,二硫鍵含量越高,SDS不可溶性麥谷蛋白大聚體越高,與之相反,SDS可溶性麥谷蛋白含量越低[35]。所以,由于二硫鍵與巰基此消彼長的關系,推測SDS可溶性麥谷蛋白含量與巰基含量成正相關。所以,在低加水量(30%)和高加水量(50%)時,SDS可溶性的麥谷蛋白含量高于中間加水量(35%~45%),這與加水量對巰基含量的影響相一致。另外,和面過程中,面粉對水分子的吸收直接影響大分子量聚合體蛋白的形成[36],大聚體含量越高,受SDS蛋白變性劑的影響越大,蛋白分子中化學鍵被破壞的程度越高[37],所以,加水量40%時大分子量聚合體蛋白含量最低。和面10、15以及20 min對面團蛋白組分含量的影響不顯著(>0.05),說明和面時間長短能影響面片的質量,但是對蛋白分子組分尤其SDS可溶性麥谷蛋白的影響可以忽略。

表3 加水量與和面時間對蛋白質組分的影響
通過研究揭示了不同加水量與和面時間影響面片質構及蛋白特性的規律,得出以下結論:
1)面片拉伸力、硬度隨著加水量的增大而減小;面片拉伸距離、黏性隨著加水量的增大而增大。加水量對面片色澤的影響主要是增加了其亮度*值和紅-綠*值,在加水量45%時黃-藍*值最大,面片褐變最強。
2)和面加水量可影響面筋蛋白質巰基、二級結構及大分子量聚合體蛋白含量,加水量為40%時,-折疊、-螺旋含量較高,巰基、大分子量聚合體蛋白含量較低。
3)加水量不同,和面所需時間亦不相同。不同加水量下,和面時間對面片質構及蛋白特性的影響較為復雜,其中和面15 min、加水量40%的面片綜合質構特性較好,蛋白分子中化學鍵的形成及穩定型二級結構的轉化較為顯著。
綜上所述,適度的加水量以及和面時間具有提高面片質構特性,促進面筋蛋白交聯的作用,對于提高產品質量具有重要意義。
[1] 楊玉玲,關二旗,李萌萌,等. 不同和面方式對面團流變特性及面條品質的影響[J]. 河南工業大學學報:自然科學版,2019,40(5):18-24,52. Yang Yuling, Guan Erqi, Li Mengmeng, et al. Effects of different mixing methods on rheological properties of dough and noodle quality[J]. Journal of Henan University of Technology: Natural Science Edition, 2019, 40(5): 18-24, 52. (in Chinese with English abstract)
[2] 王錄通. 和面工藝對面團及饅頭品質的影響研究[D]. 鄭州:河南工業大學,2018. Wang Lutong. Study on the Effect of Mixing Dough’s Process to Steamed Bread Quality and Dough[D]. Zhengzhou: Henan University of Technology; 2018. (in Chinese with English abstract)
[3] 王世新,楊強,李新華. 水分對冷凍小麥面團質構及面筋蛋白二級結構的影響[J]. 食品科學,2017,38(9):149-155. Wang Shixin, Yang Qiang, Li Xinhua. Effect of moisture on texture and gluten protein secondary structure in frozen wheat dough[J]. Food Science, 2017, 38(9): 149-155. (in Chinese with English abstract)
[4] 艾宇薇. 和面工藝對面團品質影響的研究[D]. 鄭州:河南工業大學,2013. Ai Yuwei. Study on the Effect of Kneading Dough’s Process to Dough Quality[D]. Zhengzhou: Henan University of Technology, 2013. (in Chinese with English abstract)
[5] 劉銳. 和面方式對面團理化結構和面條質量的影響[D]. 北京:中國農業科學院,2015. Liu Rui. Effects of Mixing Modes on Dough Physico-Chemical Structure and Noodle Quality Property[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[6] 劉銳,武亮,張影全,等. 基于低場核磁和差示量熱掃描的面條面團水分狀態研究[J]. 農業工程學報, 2015, 31(9): 288-294.Liu Rui, Wu Liang, Zhang Yingquan, et al. Water state and distribution in noodle dough using low-field nuclear magnetic resonance and differential scanning calorimetric[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 288-294. (in Chinese with English abstract)
[7] 葉一力,何中虎,張艷. 不同加水量對中國白面條品質性狀的影響[J]. 中國農業科學,2010,43(4):795-804. Ye Yili, He Zhonghu, Zhang Yan. Effects of different water addition levels on Chinese white noodle quality[J]. Scientia Agricultura Sinica, 2010, 43(4): 795-804. (in Chinese with English abstract)
[8] 任佳影,陳潔,張九魁. 堿面團在和面過程中面筋網絡結構變化的影響[J]. 食品工業,2019,40(8):155-158. Ren Jiaying, Chen Jie, Zhang Jiukui. Effect of alkali dough on the structure change of gluten in the process of smoothing[J]. Food Industry, 2019, 40(8): 155-158. (in Chinese with English abstract)
[9] 陳潔,汪磊,呂瑩果,等. 食鹽對燴面面團品質和面筋網絡結構的影響[J]. 中國糧油學報,2017,32(4):24-30. Chen Jie, Wang Lei, Lv Yingguo, et al. Effects of salt on stewed noodles dough quality and gluten matrix microstructure[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(4): 24-30. (in Chinese with English abstract)
[10] 劉長虹,王錄通,杜云豪,等. 和面過程面團水分分布變化與饅頭品質的關系[J]. 食品科技,2019,44(1):199-203. Liu Changhong, Wang Lutong, Du Yunhao, et al. The relationship between steamed bread quality and moisture-distribution of dough during mixing[J]. Food Science and Technology, 2019, 44(1): 199-203. (in Chinese with English abstract)
[11] 張浩,李雪琴. 質構儀測定小麥面筋的硬度與彈性[J]. 現代食品科技,2013,29(4):903-906,931. Zhang Hao, Li Xueqin. Determination of wheat gluten hardness and springiness with texture analyzer[J]. Modern Food Science & Technology, 2013, 29(4): 903-906, 931. (in Chinese with English abstract)
[12] 范會平,李瑞,鄭學玲,等. 酵母對冷凍面團發酵特性及饅頭品質的影響[J]. 農業工程學報, 2016, 32(20): 298-305. Fan Huiping, Li Rui, Zheng Xueling, et al. Effect of yeast products on fermentation characteristics of frozen dough and quality of steamed bread[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 298-305. (in Chinese with English abstract)
[13] 羅明江,羅春霞,吳贛香. Ellman's試劑比色法測定食品中蛋白質的巰基和二硫鍵[J]. 鄭州糧食學院報學報,1986(1):92-95. Luo Mingjiang, Luo Chunxia, Wu Ganxiang. Determination of sulfhydryl group and disulfuric chain of protein in food by Ellman’s reagent colorimeteic method[J]. Journal of Zhengzhou Grain College, 1986(1): 92-95. (in Chinese with English abstract)
[14] Zhan J, Ma S, Wang X X, et al. Effect of baked wheat germ on gluten protein network in steamed bread dough[J]. International Journal of Food Science & Technology, 2019, 54(10): 2839-2846.
[15] 謝新華,毋修遠,沈玥,等. 加水量對面筋蛋白水分分布及結構的影響[J]. 農業機械學報,2019,50(6):365-370. Xie Xinhua, Wu Xiuyuan, Shen Yue, et al. Effect of water addition on hydration and structure of gluten protein[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 365-370. (in Chinese with English abstract)
[16] Guo X N, Wei X M, Zhu K X. The impact of protein cross-linking induced by alkali on the quality of buckwheat noodles[J]. Food Chemistry, 2017, 221: 1178-1185.
[17] Hou G G, Saini R, Ng P K W. Relationship between physicochemical properties of wheat wlour, wheat protein composition, and textural properties of cooked Chinese white salted noodles[J]. Cereal Chemistry, 2013, 90(5): 419-429.
[18] Hussain A, Larsson H, Kuktaite R, et al. Amount and size distribution of monomeric and polymeric proteins in the grain of organically produced wheat[J]. Cereal Chemistry, 2013, 90(1): 80-86.
[19] Johansson E, Prieto L M L, J?nsson J ?. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality[J]. Cereal Chemistry, 2001, 78(1): 19-25.
[20] 趙清宇,鄭學玲. 面團吹泡特性與拉伸特性的比較研究[J]. 河南工業大學學報:自然科學版,2012,33(4):11-16. Zhao Qingyu, Zhang Xueling. Comparison of alveograph property and extensograph property of dough[J]. Journal of Henan University of Technology: Natural Science Edition, 2012, 33(4): 11-16. (in Chinese with English abstract)
[21] 劉長虹,杜云豪,王錄通,等. 依據面筋蛋白質構變化劃分饅頭面團調制階段研究[J]. 農業工程學報,2018,34(增刊):238-242. Liu Changhong, Du Yunhao, Wang Lutong, et al. Mixing stages distinguishing of steamed bread dough with changes of gluten protein property and structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.): 238-242. (in Chinese with English abstract)
[22] 李瑞. 面團延伸性改良劑的研究[D]. 無錫:江南大學,2011. Li Rui. Study of Modifying Agent on the Extensibility of Dough[D]. Wuxi: Jiangnan University, 2011. (in Chinese with English abstract)
[23] Gheorghe M, Gheorghe V, Adriana I. Bread dough kneading process optimization in industrial environment, using a device for dough consistency control[J]. Science Bulletin, 2017, 79(3): 225-236.
[24] 范會平,李瑞,鄭學玲,等. 不同酵母對冷凍面團發酵特性及饅頭品質的影響[J]. 食品與發酵工業,2011,37(11):56-59. Fan Huiping, Li Rui, Zheng Xueling, et al. Effect of yeast products on fermentation characteristics of frozen dough and quality of steamed bread[J]. Food and Fermentation Industries, 2011, 37(11): 56-59. (in Chinese with English abstract)
[25] 汪師帥,毛響,譚慧,等. 水分對堿面條品質的影響[J]. 食品科技,2019,44(6):145-149. Wang Shishuai, Mao Xiang, Tan Hui, et al. Effect of water contents on the quality of alkali noodles[J]. Food Science and Technology, 2019, 44(6): 145-149. (in Chinese with English abstract)
[26] 王璋,許時嬰,湯堅. 食品化學[M]. 北京:中國輕工業出版社,2015.
[27] 胡云峰,王奎超,陳媛媛. 不同加水量對生鮮面條品質的影響[J]. 食品研究與開發,2017,38(24):88-92. Hu Yunfeng, Wang Kuichao, Chen Yuanyuan, et al. Effect of different water addition on quality of fresh noodle[J]. Food Research and Development, 2017, 38(24): 88-92. (in Chinese with English abstract)
[28] 謝筆鈞,管華詩,徐漢生,等. 食品化學[M]. 北京:科學出版社,2004.
[29] 任欣,李小婷,沈群. 冷凍貯藏環境對速凍水餃皮品質特性的影響[J]. 農業工程學報, 2014, 30(6): 263-271. Ren Xin, Li Xiaoting, Shen Qun. Effect of packaging and storage conditions on quality properties of quick-frozen dumpling skin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 263-271. (in Chinese with English abstract)
[30] Pilar H M, Jose′ M, Amparo L R, et al. Gliadins polymerized with cysteine effects on the physical[J]. Biomacromolecules, 2004, (5): 1503-1510.
[31] Wang F J, Jin S W, Qi W. Effect of extrusion on the polymerization of wheat gluteninand changes in the gluten network[J]. Food Science Technology, 2020. DOI: 10.1007/S13197-020-04413-6.
[32] 陸啟玉,楊宏黎,韓旭. 面筋含量與面筋指數在面團熟化過程中的變化[J]. 糧油食品科技,2008,16(3):13-14,19. Lu Qiyu, Yang Hongli, Han Xu. The changes of gluten content and gluten index during dough rest[J]. Science and Technology of Cereals, Oils and Foods, 2008, 16(3): 13-14, 19. (in Chinese with English abstract)
[33] 陳潔,汪磊,呂瑩果,等. 醒面時間對燴面面團水分分布及麥谷蛋白大聚體的影響[J]. 中國食品學報,2018,18(6):167-173. Chen Jie, Wang Lei, Lv Yingguo, et al. Effect of resting time on moisture distribution and glutenin macropolymer of stewed noodles dough[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(6): 167-173. (in Chinese with English abstract)
[34] 宋國勝,胡娟,沈興,等. 超聲輔助冷凍對面筋蛋白二級結構的影響[J]. 現代食品科技,2009,25(8):860-864. Song Guosheng, Hu Juan, Shen Xing, et al. Effect of ultrasound-assisted freezing on changes in protein secondary structure studied by fourier transform infrared spectroscopy[J]. Modern Food Science & Technology, 2009, 25(8): 860-864. (in Chinese with English abstract)
[35] 李學紅,胡鐘毓,陸勇,等. 凍藏時間對麥谷蛋白和麥醇溶蛋白二級結構及面團性能的影響研究[J]. 食品工業科技,2014,35(1):83-86,97.Li Xuehong, Hu Zhongyu, Lu Yong, et al. Effect of the time of frozen on secondary structure of glutenin and gliadin and textural properties of dough[J]. Science and Technology of Food Industry, 2014, 35(1): 83-86, 97. (in Chinese with English abstract)
[36] 劉銳,唐娜,武亮,等. 真空和面對面條面團谷蛋白大聚合體含量及粒度分布的影響[J]. 農業工程學報,2015,31(10):289-295. Liu Rui, Tang Na, Wu Liang, et al. Effects of vacuum mixing on glutenin macropolymer content and size distribution in noodle dough[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 289-295. (in Chinese with English abstract)
[37] Agnieszka N, Monika S C, Antoni M, et al. Dietary fiber-induced changes in the structure and hermal properties of gluten proteins studied by fourier transform-raman spectroscopy and thermogravimetry[J]. Pubmed, 2016, 64(10): 2094.
Effects of water addition and mixing time on the texture and protein properties of dough sheets
Zhang Yi1, Chen Jie1※, Wang Lei1, Fu Junhui2
(1.,,450001,; 2.,452470,)
In the process of dough blending, the water addition and mixing time have important influences on the sensory quality, physical and chemical properties, and texture of food products. The optimum amount of water addition can significantly improve the structure and quality of flour food. If the water addition is too high, the dough will be too soft and difficult to form. If the water addition is too low, the protein in the gluten cannot fully contact with the water, and thereby to form relatively low gluten. Alternatively, if the mixing time is insufficient, the internal structure of dough sheets will be rough and uneven with many particles, where the surface of dough sheets can be easy to tear. If the mixing time is too long, the surface of dough sheets will be too wet and sticky, unfavorable to the shaping operation of dough sheets. The moisture content of dough is also closely related to the properties of flour protein after dough formation. Taking wheat dough sheets as the research objects, the effects of water addition on the texture and protein properties of dough sheets under different mixing time were invesigated. Texture analyzer was selected to characterize the sensory physical property and texture characteristics of dough sheets, particularly related to mechanical properties. Fourier transform infrared spectroscopy (FTIR) was used to collect the infrared absorption spectrum and radiation spectrum of dough sheets. The protein content in the dough sheets was obtained using the Gauss deconvolution and second-order derivative methods. High performance liquid chromatography (HPLC) was used to determine protein content. The results showed that the tensile force and hardness of dough sheets decreased, while the extensibility and viscosity increased with the increase of water addition. In moderate water addition, the water molecules could be fully immersed in gluten protein to generate the protein hydrate, and thereby to form a gluten network with mutual adhesion, indicating good extensibility, high viscosity, strong tensile resistance, and low hardness. In low water addition, the flour cannot fully absorb water, the gluten protein cannot fully hydrate, and thereby the formation of dough sheets was rough and hard, with the strong instant breaking force. In high water addition, the starch in flour dissociated from the gluten network, while the gluten protein and starch were in the state of water absorption saturation, where too many water molecules existed between protein-protein and protein-starch particles to weaken the intermolecular force, thereby to reduce the viscosity, toughness, and the tensile strength of dough sheets, leading to extremely low hardness and pull deformation. The water addition can significantly increase the whiteness (*) and red green value (*) in the color of dough sheets. The yellow blue value (*) reached the maximum at the water addition of 45%, due to the light refraction and the action of polyphenol oxidase, indicating the strongest browning of dough sheets. The* value of dough sheets decreased when the water addition reached 50%, where the browning slowed down due to the dilution of polyphenol oxidase. The content of sulfhydryl group, secondary structure and large molecular weight polymer protein in gluten protein were also affected by the amount of water added to gluten. The content of sulfhydryl group reached the minimum at the water addition of 40%, as well the lowest occurred in the content of large molecular weight polymer protein formed by disulfide bond. The reason was that water can promote the formation of hydrogen bond, and then maintain the content of- sheet and-helix, further to stabilize the conformation of protein. There was complex influence of mixing time on the texture and protein properties of dough sheets. The extensibility of the dough sheets was the better, the tensile force, hardness were moderate , viscosity and sulfhydryl content were the lowest, and the content of- sheet was higher at mixing time of 15 min. In the mixing time of 15 min and the water addition of 40%, the dough sheets achieved the optimum, particularly on the formation of chemical bond and the transformation of stable secondary structure. When the mixing time was not enough, the weak hydrogen bond between protein molecules cannot extend the gluten network, and thereby to increase the content of random coil of disordered structure. When the mixing time was too long, the formed hydrogen bond broke again to destroy the molecular structure of protein, where-sheet was converted into–turn. The findings demonstrated that the optimum water addition and mixing time can improve the texture characteristics of dough sheets and the cross-linking of gluten protein. The application of appropriate water addition and mixing time in production can provide reference for the production parameters of flour products.
texture; protein; water addition; mixing time; dough sheets
張毅,陳潔,汪磊,等. 加水量與和面時間對面片質構及蛋白特性的影響[J]. 農業工程學報,2020,36(14):299-306.doi:10.11975/j.issn.1002-6819.2020.14.036 http://www.tcsae.org
Zhang Yi, Chen Jie, Wang Lei, et al. Effects of water addition and mixing time on the texture and protein properties of dough sheets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 299-306. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.036 http://www.tcsae.org
2020-04-20
2020-06-28
“十三五”國家重點研發計劃項目(2016YFD04012021)
張毅,研究方向為非發酵主食品加工。Email:yizhanggd@163.com
陳潔,教授,研究方向為食品加工。Email:cjie06@163.com
10.11975/j.issn.1002-6819.2020.14.036
TS213.2
A
1002-6819(2020)-14-0299-08