999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

HYPOELLIPTIC ESTIMATE FOR SOME COMPLEX VECTOR FIELDS

2020-09-21 13:48:06LIWeixiLIULvqiaoZENGJuan
數(shù)學雜志 2020年5期

LI Wei-xi,LIU Lv-qiao,ZENG Juan

(1.School of Mathematics and Statistics;Statistics and Computational Science Hubei Key Laboratory,Wuhan University,Wuhan 430072,China)

(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

1 Introduction and Main Results

Let Ω?Rnbe a neighborhood of 0,and denote byithe square root of-1.We consider the following system of complex vector fields

whereφ(x)is a real-valued function defined in Ω.This system was first studied by Treves[4],and considered therein is more general case fortvaries in Rmrather than R.Denote by(ξ,τ)the dual variables of(x,t).Then the principle symbolσfor the system{Pj}1≤j≤nis

with(x,t;ξ,τ)∈T*(Ω×Rt){0},and thus the characteristic set is

Since outside the characteristic set the system{Pj}1≤j≤nis(microlocally)elliptic,we only need to study the microlocal hypoellipticity in the two components{τ>0}and{τ<0}under the assumption that

Note we may assumeφ(0)=0 if replacingφbyφ-φ(0).Throughout the paper we will always supposeφsatisfies the following condition of finite type

for some positive integerk.In view of(1.2)it suffices to consider the nontrivial case ofk≥2 for the maximal hypoellipticity.By maximal hypoellipticity(in the sense of Helffer-Nourrigat[2]),it means the existence of a neighborhood?Ω of 0 and a constantCsuch that for anywe have

where and throughout paper we use the notationfor vectorvalued functions=(a1,···,an).Note that the maximal hypoellipticity along with the condition(1.3)yields the following subellptic estimate

Thus the subellipticity is in some sense intermediate between the maximal hypoellipticity and the local hypoellipticity.

Observe the system{Pj}1≤j≤nis translation invariant fort.So we may perform partial Fourier transform with respect tot,and study the maximal microhypoellipticity,in the two directionsτ>0 andτ<0.Indeed we only need consider without loss of generality the maximal microhypoellipticity in positive directionτ>0,since the other directionτ<0 can be treated similarly by replacingφby-φ.Consider the resulting system as follows after taking partial Fourier transform fort∈R.

and we will show the maximal microhypoellipticity at 0 in the positive direction inτ>0,which means the existence of a positive numberτ0>0,a constantC>0 and a neighborhood?Ω of 0 such that

where and throughout the paper we denotefor short if no confusion occurs.We remark the operators defined in(1.5)is closely related to the semi-classical Witten Laplacianwithτ-1the semi-classical parameter,by the relationship

where(·,·)L2stands for the inner product inL2(Rn).Helffer-Nier[1]conjecturedis subelliptic near 0 ifφis analytic and has no local minimum near 0,and this still remains open so far.Note(1.6)is a local estimate concerning the sharp regularity near 0∈Rnforτ>0,and we have also its global counterpart,which is of independent interest for analyzing the spectral property of the resolvent and the semi-classical lower bound of Witten Laplacian.We refer to Helffer-Nier’s work[1]for the detailed presentation on the topic of global maximal hypoellipticity and its application to the spectral analysis on Witten Laplacian.

Theorem 1.1(Maximal microhypoellipticity forτ>0)Letφbe a polynomial satisfying condition(1.3)withk≥2.Denote byλj,1≤j≤n,the eigenvalues of the Hessian matrix(?xi?xjφ)n×n.Suppose there exists a constantC*>0 such that for anyx∈Ω,we have the following estimates:ifk=2,then

and ifk>2,then

where∈0>0 is an arbitrarily small number andμβare given numbers withμβ>(k-2)/(k-|β|)for 2≤|β|≤k-1.Then the systemPjdefined in(1.1)is maximally microhypoelliptic in positive positionτ>0,that is,estimate(1.6)holds.

Replacingφby-φwe can get the maximal microhypoellipticity forτ<0,and thus the maximal hypoellipticity for allτ.

Corollary 1.2(Maximal hypoellipticity)Under the same assumption as Theorem 1.1 with(1.7)and(1.8)replaced by the estimate that for anyx∈Ω,

the systemPjdefined in(1.1)is maximally hypoelliptic,that is,estimate(1.4)holds.

Remark 1.3We need only verify conditions(1.7)and(1.8)for these points where Δφis positive,since it obviously holds for the points where Δφ≤0.

The details of the proof for the main result were given by[3].

主站蜘蛛池模板: av在线5g无码天天| 中文字幕亚洲专区第19页| 亚洲免费人成影院| 一级毛片免费播放视频| 亚洲第一成年网| 成人国产免费| 成人亚洲天堂| 日日碰狠狠添天天爽| 亚洲色图欧美激情| 久久无码av三级| 欧美成人影院亚洲综合图| 18禁色诱爆乳网站| 亚洲天堂免费| 国产99精品久久| 国产美女自慰在线观看| 国产免费网址| 老司机久久精品视频| 四虎影视库国产精品一区| 亚洲Av综合日韩精品久久久| 精品国产Av电影无码久久久| 欧美在线视频不卡第一页| 中文字幕久久亚洲一区| 伊人久久青草青青综合| 91亚洲影院| 成人国内精品久久久久影院| 日a本亚洲中文在线观看| 亚洲有码在线播放| 日本亚洲成高清一区二区三区| 国产原创自拍不卡第一页| 欧美成人国产| 国产成人精品综合| 四虎精品国产AV二区| 色综合热无码热国产| 福利在线不卡一区| 国产亚洲美日韩AV中文字幕无码成人| 人人看人人鲁狠狠高清| a级毛片在线免费| 91精品国产91久无码网站| 国产成人高清精品免费5388| 国产精品视频系列专区| 国产精品林美惠子在线观看| 久久综合九色综合97网| 91丝袜乱伦| 国产精品黄色片| 白浆免费视频国产精品视频| 88av在线播放| 亚洲无限乱码一二三四区| 免费人成视频在线观看网站| 99久久精品国产自免费| 国产精品久久久久鬼色| 色天天综合| 亚洲自偷自拍另类小说| 国产欧美日韩在线一区| 国产精品分类视频分类一区| 亚洲精品无码AⅤ片青青在线观看| 日本五区在线不卡精品| 欧美h在线观看| 一本综合久久| 亚洲成年人网| 婷五月综合| 韩日无码在线不卡| 97久久免费视频| h视频在线观看网站| 国产网站免费看| 日a本亚洲中文在线观看| 日本欧美中文字幕精品亚洲| 亚洲欧美在线综合一区二区三区 | 在线观看免费AV网| 波多野结衣视频网站| 欧美日韩久久综合| 国产成人精品三级| 免费人成网站在线观看欧美| 久久精品视频一| 亚洲天堂久久新| 亚洲香蕉久久| 最新痴汉在线无码AV| 亚洲男人在线天堂| 成人毛片免费观看| 蜜桃视频一区二区三区| 欧美国产精品不卡在线观看| 久久精品丝袜| h网址在线观看|