999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NORM STRUCTURES OF A FUZZY NORMED SPACE

2020-09-21 13:48:08LIXinxinWUJianrong
數學雜志 2020年5期

LI Xin-xin,WU Jian-rong

(School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,China)

Abstract:In this paper,the problem of norm structures in the fuzzy normed space is studied.By using the ”cut” method and introducing K function,we discuss the norm structures existing in the fuzzy normed space with continuous t-norm in a broader sense,and give the relations between these norm structures.The obtained results generalize the existing conclusions and provide a new way for the further research of the fuzzy normed space.

Keywords:fuzzy analysis;fuzzy normed space;norm structure;topology

1 Introduction

Inspired by the notion of probabilistic metric spaces,Kramosil and Michalek[1]in 1975 introduced the notion of fuzzy metric,a fuzzy set in the Cartesian productX×X×(-∞+∞)satisfying certain conditions.Later,George and Veeramani[2]used the concept of continuoust-norm to modify this definition of fuzzy metric space and showed that every fuzzy metric space generates a Hausdorff first countable topology.In 1994,Cheng and Mordeson[3]introduced an idea of a fuzzy norm on a linear space in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type[1].Following Cheng and Mordeson,Bag and Samanta[4]introduced a similar definition of fuzzy norm.The novelty of this definition is the validity of a decomposition theorem for a special type of fuzzy norm into a family of crisp norms.This concept was used in fuzzy functional analysis and its applications[5–8].In[9],Sadeqi and Kia proved that a separating family of seminorms introduces a fuzzy norm in general but it is not true in classical analysis.In[10],Alegre and Romaguera also dealt with fuzzy normed spaces in the sense of[3],characterized fuzzy norms in terms of a nondecreasing and separating family of seminorms,and generalized the classical Hahn-Banach extension theorem for normed spaces.In addition to this,Bag and Samanta established some principles of functional analysis in fuzzy settings,which represent a foundation for the development of fuzzy functional analysis.Some other conclusions can be found in[11–16].

In this paper,we introduce the concept ofr-norm and show some norm structures in a fuzzy normed space.Moreover,we investigate the relationships between the normed topology and the topology induced by these norm structures.The structure of the paper is as follows.In the next section,we give the preliminaries on a fuzzy normed space.In Section 3,we show our main results.

In this paper,Ris the set of all real numbers,R+is the set of all positive real numbers,Xis a real linear space.

2 Preliminaries

In this section,we first recall some basic concepts of fuzzy normed spaces.

definition 2.1(see[17])A binary operation*:[0,1]×[0,1]→[0,1]is a continuoust-norm,if*satisfies the following conditions:?a,b,c,d∈[0,1],

(1)commutativea*b=b*a;

(2)associative(a*b)*c=a*(b*c);

(3)a*b≤c*dwhenevera≤candb≤d;

(4)a*1=a;

(5)*is continuous.

Lemma 2.1(see[17])Let*:[0,1]×[0,1]→[0,1]be a continuoust-norm.

(1)If 1>r1>r2>0,then there existsr3∈(0,1)such thatr1*r3≥r2;

(2)Ifr4∈(0,1),then there existsr5∈(0,1)such thatr5*r5≥r4.

We can strengthen Lemma 2.1 to the following form.

Lemma 2.2Let*:[0,1]×[0,1]→[0,1]be a continuoust-norm.

(1)If 1>r1>r2>0,then there existsr3∈(0,1)such thatr1*r3>r2;

(2)Ifr4∈(0,1),then there existsr5∈(r4,1),such thatr5*r5>r4.

Proof(1)Let 1>r1>r2>0.Taker∈(r2,r1).From Lemma 2.1(1),there existsr3∈(0,1)such thatr1*r3≥r.Thusr1*r3>r2.

(2)Letr4∈(0,1).Taker∈(r4,1).From Lemma 2.1(2),there existsr5∈(0,1)such thatr5*r5≥r.Thusr5*r5>r4.

In this paper,the definition of a fuzzy normed linear space in[4]is changed accordingly,and the following definition is given.

definition 2.2LetXbe a linear space,*be a continuoust-norm,Nbe a fuzzy subset ofX×(0,+∞).Nis called a fuzzy norm onXif the following conditions are satisfied:for allx,y∈X,

(1)?t>0,N(x,t)>0;

(2)(?t>0 ,N(x,t)=1)iffx=θ,whereθis the zero element ofX;

(3)?t>0 ,

(4)?t,s>0,N(x,t)*N(y,s)≤N(x+y,t+s);

(5)N(x,·):(0+∞)→( 0,1]is continuous.

The 3-tuple(X,N,*)is said to be a fuzzy normed linear space.Obviously,ifNis a fuzzy norm,thenN(x,·)is non-decreasing for allx∈X.

Remark 2.1If(1)and(5)are replaced by

(N1)?t∈Rwitht≤0 ,N(x,t)=0;

(N5)N(x,·)is a non-decreasing function ofRandrespectively,thenNis a fuzzy norm in the sense of[4].

Example 2.1LetXbe a linear normed space,N:X×(0,+∞)→(0,1]is defined bythenNis a fuzzy norm onX.

In the rest of this paper,we always suppose the functionK:[0,1]→[0,1]satisfies the following conditions:K(0)=0,K(t)/≡0,Kis increasing and continuous at 0.

Theorem 2.1Let(X,N,*)be a fuzzy normed linear space.Forx∈X,r∈(0,1),t>0,we define

Then{BN(x,r,t):r∈(0,1),t>0}is a base of neighborhoods atx.

Proof(1)?x∈X,t>0,r∈(0,1),x∈BN(x,r,t).

(2)?x∈X,0<r1,r2<1,t1,t2>0,there existsr3=min{r1,r2},t3={t1,t2},from the non-decreasing ofN(x,·),we haveBN(x,r3,t3)?BN(x,r2,t2),BN(x,r3,t3)?BN(x,r1,t1),soBN(x,r3,t3)?BN(x,r2,t2)∩BN(x,r1,t1).

(3)For anyBN(x,r,t),from Lemma 2.2,we have 0<r1<rsuch that(1-K(r1))*(1-K(r1))>1-K(r).Lety∈BN(x,r1,t)?BN(x,r,t),we knowN(x-y,t)+K(r1)>1.SinceN(x-y,·)is continuous,we can takeδ>0 such thatN(x-y,t-δ)+K(r1)>1 .Therefore,for anyz∈BN(y,r1,δ),we haveN(y-z,δ)+K(r1)>1 and

Thus,z∈BN(x,r,t).From the arbitrariness ofz,we knowBN(y,r1,δ)?BN(x,r,t).From(1)–(3),we can conclude that{BN(x,r,t):x∈X,r∈( 0,1),t>0}forms a base of neighborhoods atx∈X.

Based on the{BN(x,r,t):x∈X,r∈( 0,1),t>0},we have a topologyτNwhich is said to be the topology generated by the fuzzy normN.It is easy to see the topologyτNis the first countable.In fact,the countable collection of balls{BN(x,1/n,1/n):x∈X,n=2,3,...}forms a base of neighborhoods atx∈X.

3 Main Results

In this section,we shall introduce norm structures in a fuzzy normed space,and investigate the relationships between the fuzzy topologyτNand the topologies induced by these norm structures.For simplicity,we always suppose a fuzzy normed space(X,N,*)satisfies the regular condition:?x∈X,there existst>0 such thatN(x,t)=1.

Theorem 3.1Let(X,N,*)be a fuzzy normed space.define a function‖·‖0onXas follows

then‖·‖0is a norm onX.

ProofObviously,for allx∈X,‖x‖0≥0 ,‖x‖0=0 if and only ifx=θ.Now,for anyx,y∈X,ε>0 ,from the definition of‖·‖0,we get that

Therefore

and hence‖x+y‖0≤‖x‖0+‖y‖0+ε.From the arbitrariness ofε>0 ,we have

Additionally,?α∈R{0},we have

Obviously,‖αx‖0=|α|‖x‖0ifα= 0.Thus‖·‖0is a norm onX.

Theorem 3.2(X,N,*)is a fuzzy normed space,‖·‖0is the norm defined by(3.1).Letr∈(0,1],x∈X,

Then,for a fixed pointx∈X,‖x‖ris a decreasing function with respect tor∈( 0,1],and

ProofGivenx∈X,r1,r2∈(0,1)withr1≥r2,we have

hence‖x‖r1≤‖x‖r2,which means‖x‖ris decreasing with respect tor∈( 0,1].Soexists and

Moreover,for anyε>0 ,x∈X,N(x,‖x‖0+ε)=1.From(3.2),we obtain

From the arbitrariness ofε>0 ,we know

On the other hand,for anyε>0 ,we knowt>‖x‖0-εwheneverN(x,t)=1 from the definition of‖·‖0.That is,N(x,t)<1 on(0,‖x‖0-ε].Recalling thatKis increasing and continuous at 0,there existsr0=r0(ε)such thatN(x,t)+K(r0)<1 on(0,‖x‖0-ε].That is,t>‖x‖0-εwheneverN(x,t)+K(r0)≥1.Then we have

which together with the arbitrariness ofεimplies that

Inequalities(3.4)and(3.5)imply the equation(3.3).

Remark 3.1In[4],‖x‖rwas defined as inf{t>0:N(x,t)≥r}.Therefore,the definition(3.2)of‖x‖ris a generalization of that in[4].We call‖·‖rther-norm in a fuzzy normed space(X,N,*).

Lemma 3.1Let(X,N,*)be a fuzzy normed space,x∈X.IfN(x,·)is strictly increasing,then

ProofFor anyr∈(0,1),lett0=inf{t>0:N(x,t)+K(r)>1}.From(3.2),we get‖x‖r≤t0.If‖x‖r<t0,then there is 0<t2<t0such thatN(x,t2)+K(r)≥1.SinceN(x,·)is strictly increasing,thenN(x,t0)+K(r)>1.From the continuity ofN(x,·),there isδ>0 such thatN(x,t0-δ)+K(r)>1 which conflicts with the definition oft0.Thus,‖x‖r=t0=inf{t>0:N(x,t)+K(r)>1}.

Lemma 3.2(X,N,*)is a fuzzy normed space.N(x,·)is strictly increasing for the fixed pointx∈X.Lett>0 andr∈(0,1).Then‖x-y‖r<tif and only ifN(x-y,t)+K(r)>1,that isBN(x,r,t)=Nr(x,t),where

ProofSuppose‖x-y‖r<t.From Lemma 3.1,there exists 0<t0<tsuch thatN(x-y,t0)+K(r)>1.Hence,N(x-y,t)+K(r)>N(x-y,t0)+K(r)>1.SoBN(x,r,t)?Nr(x,t).

Now,we supposeN(x-y,t)+K(r)>1.SinceN(x-y,·)is continuous,there exists 0<t1<tsuch thatN(x-y,t1)+K(r)>1.From(3.6),we know‖x-y‖r≤t1<t.SoBN(x,r,t)?Nr(x,t).This completes the proof.

Theorem 3.3(X,N,*)is a fuzzy normed space,N(x,·)is strictly increasing for the fixed pointx∈X.Then‖x‖r=‖x‖0forr∈(0,1]if and only ifNsatisfies the following condition:for allt>0,

ProofThe sufficiency is obvious.

To prove the necessity,we suppose that‖x‖r=‖x‖0andN(x,t)+K(r)>1.From the definition of‖x‖r,‖x‖r≤t,that is‖x‖0≤t.For anyε>0,from the definition of‖·‖0,we gett′>0 such thatt+ε>t′andN(x,t′)=1.Therefore,N(x,t+ε)=1,which together with the continuity ofN(x,·)implies thatN(x,t)=1.

Theorem 3.4If(X,N,*)is a fuzzy normed space,then

(i)the topologyτ0generated by‖·‖0is stronger than the topologyτN;

(ii)τ0=τNif and only ifNsatisfies the following condition:for eachx∈X,t>0 andy∈N0(x,t),there existr′∈(0,1),t′>0 and 0<s′<tsuch that

where

Proof(i)To proveτ0?τN,it is sufficient to prove{xn}is convergent tox0with respect toτNwhenever{xn}is convergent tox0with respect toτ0.In fact,if{xn}is convergent tox0with respect toτ0,then for anyε>0,there existsNsuch thatfor alln≥N.Therefore,for anyr∈(0,1],we have‖xn-x0‖r<εfor alln≥N.From Lemma 3.2,we haveN(xn-x0,ε)+K(r)>1 for alln≥N.That is,xn∈BN(x0,r,ε)for alln≥N.Thus,{xn}is convergent tox0with respect toτN.

(ii)NecessityWe suppose thatτ0=τN.Then,for eachx∈Xandt>0,N0(x,t)∈τ0?τN. Hence,for eachy∈N0(x,t),there existr′∈(0,1)andt′>0 such thatBN(y,r′,t′)?N0(x,t),that is,‖x-z‖0<twheneverN(y-z,t′)+K(r′)>1 for anyz∈X.Obviously,‖x-z‖0<tis equivalent to that there exists 0<s′<tsuch thatN(x-z,s′)=1.

SufficiencyFrom(i),we only have to proveτ0?τN.To do that,it is sufficient to proveN0(x,t)∈τNfor eachx∈X,t>0.In fact,for anyy∈N0(x,t),by the supposition,there existr′∈(0,1),t′>0 and 0<s′<tsuch that(3.9)holds,Which means thatBN(y,r′,t′)?N0(x,t).ThusN0(x,t)∈τN.

Corollary 3.1(X,N,*)is a fuzzy normed space.N(x,·)is strictly increasing for the fixed pointx∈X.IfNsatisfies the following condition:there existsr′∈(0,1)such that for anyt>0,x∈X,

Thenτ0=τN.

ProofLetx∈X,t>0 andy∈N0(x,t)arbitrarily,by the definition ofN0(x,t),there exists 0<s*<tsuch thatN(x-y,s*)=1.Takes*<s′<t,t′=s′-s*.By the supposition,whenN(z-y,t′)+K(r′)>1,we haveN(z-y,t′)=1,and hence

From Theorem 3.4(ii),we knowτ0=τN.

Theorem 3.5(X,N,*)is a fuzzy normed space,N(x,·)is strictly increasing for the fixed pointx∈X.‖·‖ris defined by(3.2)for anyr∈(0,1).Then‖·‖ris a pseudonorm onXif and only ifNsatisfies the following condition:for anyx,y∈X,t1,t2>0,N(x-z,t1)+K(r)>1 andN(z-y,t2)+K(r)>1 imply thatN(x-y,t1+t2)+K(r)>1.

Proof SufficiencyIt is easy to see that‖x‖r≥0,‖x‖r=0 ifx=θ.

For anyε>0,we obtain

By the supposition,we obtain

Therefore

From the arbitrariness ofε>0,we know

Now,we prove‖αx‖r=|α|‖x‖r.In fact,?α∈R{0},we have

Obviously,‖αx‖r=|α|‖x‖rifα=0.

NecessitySuppose thatN(x-z,t1)+K(r)>1 andN(z-y,t2)+K(r)>1.By the continuity ofN(x,·),there existsδ>0 such thatN(x-z,t1-δ)+K(r)>1 andN(z-y,t2-δ)+K(r)>1.So‖x-z‖r≤t1-δand‖z-y‖r≤t2-δ.Since‖x-y‖r≤‖x-z‖r+‖z-y‖r,we have‖x-y‖r≤t1+t2-2δ<t1+t2.By(3.2),there existst0<t1+t2such thatN(x-y,t0)+K(r)≥1.SinceN(x-y,·)is strictly increasing,we getN(x-y,t1+t2)+K(r)>1.

主站蜘蛛池模板: 精品五夜婷香蕉国产线看观看| 在线播放国产一区| 亚洲高清中文字幕| 国产人成网线在线播放va| 精品国产香蕉伊思人在线| 日韩欧美中文字幕一本| 欧美激情伊人| 欧美国产综合色视频| 在线观看免费黄色网址| 99热最新在线| 欧洲高清无码在线| 91丨九色丨首页在线播放| 免费在线色| 中文精品久久久久国产网址| 中文字幕丝袜一区二区| 久久国产精品嫖妓| 国内精品视频在线| 毛片免费试看| 亚洲人成日本在线观看| 国产人免费人成免费视频| 全免费a级毛片免费看不卡| 欧美精品在线看| 综合亚洲网| 日本欧美中文字幕精品亚洲| 国产欧美日韩精品综合在线| 亚洲天堂区| 制服丝袜国产精品| 在线欧美国产| 亚洲av片在线免费观看| 国产色网站| 毛片大全免费观看| 伦伦影院精品一区| 国产精品手机视频一区二区| 国产va在线观看免费| 日韩午夜福利在线观看| AV无码一区二区三区四区| 18禁黄无遮挡免费动漫网站| 色婷婷综合在线| 99视频在线免费观看| 毛片三级在线观看| 成人在线天堂| 国产第二十一页| 国产精品亚洲欧美日韩久久| 手机看片1024久久精品你懂的| 欧美黄网站免费观看| 成人午夜福利视频| 永久在线精品免费视频观看| 亚洲精品国产综合99| 美女视频黄频a免费高清不卡| 日本国产精品| 国产h视频在线观看视频| 九九精品在线观看| 四虎影视库国产精品一区| 五月婷婷精品| 99久久国产综合精品2023| 亚洲福利一区二区三区| 国产成人凹凸视频在线| 国产91九色在线播放| 成人在线观看一区| 国产激爽大片在线播放| 国产无码精品在线| 一级毛片视频免费| 国产欧美日韩免费| 国产美女叼嘿视频免费看| 丁香婷婷激情综合激情| 毛片一级在线| 国产精品冒白浆免费视频| 欧美日韩专区| 四虎永久在线| 成人伊人色一区二区三区| 国产性生大片免费观看性欧美| 久久狠狠色噜噜狠狠狠狠97视色| 国产主播在线一区| 日本在线亚洲| 欧美一级高清视频在线播放| 国产欧美日韩资源在线观看| 人妻中文久热无码丝袜| 欧美一级特黄aaaaaa在线看片| 波多野结衣久久精品| 精品人妻无码中字系列| 亚洲精品人成网线在线 | 热伊人99re久久精品最新地|