999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BIFURCATION AND POSITIVE SOLUTIONS OF A p-LAPLACIAN PROBLEM

2020-09-21 13:48:14LUOHua
數學雜志 2020年5期

LUO Hua

(1.School of Economics and Finance,Shanghai International Studies University,Shanghai201620,China)

(2.School of Mathematics,Dongbei University of Finance and Economics,Dalian116025,China)

Abstract:This paper studies a p-Laplacian problem with non-asymptotic nonlinearity at zero or infinity.By using the bifurcation and topological methods,the existence/nonexistence and multiplicity of positive solutions are obtained.The previous results of the existence of positive solutions are enriched and generalized.

Keywords: bifurcation;positive solution;p-Laplacian;topological method

1 Introduction

Consider the followingp-Laplacian problem

whereλis a nonnegative parameter,Ω is a bounded domain of RNwith smooth boundary?Ω,p∈(1,+∞)andf:[0,+∞)→[0,+∞)is some given continuous nonlinearity.We also assume thatf(s)>0 fors>0 and there existf0,f∞∈[0,+∞]such that

whereφp(s)=|s|p-2s.

Iff0,f∞∈(0,+∞)withf0/=f∞,it follows from Theorem 5.1–5.2 in[1]that problem(1.1)has at least one positive solution for anyλ∈(min{λ1/f0,λ1/f∞},max{λ1/f0,λ1/f∞}),whereλ1is the first eigenvalue of problem(1.1)withf(s)=φp(s).Here we study the cases off0/∈(0,+∞)orf∞/∈(0,+∞).Iffis superlinear,we also require thatfsatisfies the following subcritical growth condition

for someq∈(p,p*)and positive constantC,where

is the Serrin’s exponent(see[2]).

Our main result is the following theorem.

Theorem 1.1(a)Iff0∈(0,+∞)andf∞=0,problem(1.1)has at least one positive solution for everyλ∈(λ1/f0,+∞).

(b)Iff0∈(0,+∞)andf∞=+∞,problem(1.1)has at least one positive solution for everyλ∈(0,λ1/f0).

(c)Iff0=0 andf∞∈(0,+∞),problem(1.1)has at least one positive solution for everyλ∈(λ1/f∞,+∞).

(d)Iff0=f∞=0,there existsλ*>0 such that problem(1.1)has at least two positive solutions for anyλ∈(λ*,+∞).

(e)Iff0=0 andf∞=+∞,problem(1.1)has at least one positive solution for anyλ∈(0,+∞).

(f)Iff0=+∞andf∞=0,problem(1.1)has at least one positive solution for anyλ∈(0,+∞).

(g)Iff0=+∞andf∞∈(0,+∞),problem(1.1)has at least one positive solution for anyλ∈(0,λ1/f∞).

(h)Iff0=f∞=∞,there existsλ*>0 such that problem(1.1)has at least two positive solutions for anyλ∈(0,λ*).

2 Proof of Theorem 1.1

We first have the following two nonexistence results.

Lemma 2.1Assume that there exists a positive constantρ>0 such that

for anys>0.Then there existsξ*>0 such that problem(1.1)has no positive solution for anyλ∈(ξ*,+∞).

ProofBy contradiction,assume thatun(n=1,2,···)are positive solutions of problem(1.1)withλ=λn(n=1,2,···)such thatλn→+∞asn→+∞.Then we have thatλnf(un)/φp(un)>λ1fornlarge enough.By Theorem 2.6 of[3],we know thatunmust change sign in Ω fornlarge enough,which is a contradiction.

Lemma 2.2Assume that there exists a positive constant?>0 such that

for anys>0.Then there existsη*>0 such that problem(1.1)has no positive solution for anyλ∈(0,η*).

ProofSuppose,on the contrary,that there exists one positive solutionu.Then we have that

which implies thatλ≥λ1/?.

Let

with the usual norm

Set

whereωis the outward pointing normal to?Ω.

Proof of Theorem 1.1(a)From Lemma 5.4 of[1],there exists a continuumCof nontrivial solutions of problem(1.1)emanating from(λ1/f0,0)such thatC?(R×P)∪{(λ1/f0,0)},meets∞in R×E.It suffices to show thatCjoins(λ1/f0,0)to(+∞,+∞).Lemma 2.2 implies thatλ>0 onCandλ=0 is not the blow up point ofC.

We claim thatCis unbounded in the direction ofE.Suppose,by contradiction,thatCis bounded in the direction ofE.So there exist(λn,un)∈Cand a positive constantMsuch thatλn→+∞asn→+∞and‖un‖≤Mfor anyn∈N.It follows thatf(un)/un≥δfor some positive constantδand alln∈N.Lemma 2.1 implies thatun≡0 fornlarge enough,which is a contradiction.Lemma 5.1 of[4]implies that the unique blow up point ofCisλ=+∞.Now the desired conclusion can be got immediately from the global structure ofC.

(b)It is enough to show thatCjoins(λ1/f0,0)to(0,+∞).Lemma 2.1 implies thatCis bounded in the direction ofλ.By virtue of Lemma 5.1 of[4],we know that(0,+∞)is the unique blow up point ofC.

(c)If(λ,u)is any solution of(1.1)with‖u‖0,dividing(1.1)by‖u‖2(p-1)and settingw=u/‖u‖2yield

define

Then(2.1)is equivalent to

By doing some simple calculations,we can show thatApplying the conclusion of(a)and the inversionw→w/‖w‖2=u,we obtain the desired conclusion.

(d)define

and consider the following problem

From Proposition 2 of[4],for each∈>0 there exists anN0such that for everyn>N0,Cn?V∈(C)withV∈(C)denoting the∈-neighborhood ofC.It follows that(nλ1,+∞)?Proj(Cn)?Proj(V∈(C)),where Proj(Cn)denotes the projection ofCnon R.So we have that(nλ1+∈,+∞)?Proj(C)for anyn>N0.Hence,we haveC{∞}/?.

Let

For any fixedn∈N,we claim thatCn∩S1=?.Otherwise,there exists a sequence(λm,um)∈Cnsuch that(λm,um)→(+∞,u*)∈S1with‖u*‖<+∞.It follows that‖um‖ ≤Mnfor some constantMn>0.It implies thatfn(um)/um≥δnfor some positive constantδnand allm∈N.Lemma 2.1 implies thatum≡0 formlarge enough,which contradicts the fact of‖v*‖ >0.It follows thatSinceone has thatC∩S1=?.Furthermore,set

For any fixedn∈N,byf∞=0 and an argument similar to that of(a),we have thatCn∩S2=?.Reasoning as the above,we have thatC∩S2=?.Hence,C∩(S1∪S2)=?.Takingz*=(+∞,0),we haveTherefore,we obtain thatC∩{∞}={z*,z*}.Clearly,is pre-compact.So Lemma 3.1 of[6]implies thatCis connected.By an argument similar to that of Theorem 1.3 of[4],we can show thatC∩([0,+∞)×{0})=?.Now the desired conclusion can be deduced from the global structure ofC.

(e)By an argument similar to that of(d),in view of the conclusion of(b),we can get the desired conclusion.

(f)By an argument similar to that of(c)and the conclusion of(e),we can prove it.

(g)By an argument similar to that of(c)and the conclusion of(b),we can obtain it.

(h)define

主站蜘蛛池模板: 欧美一区二区福利视频| 91亚洲精选| 国产精品jizz在线观看软件| 在线看AV天堂| 国产成熟女人性满足视频| 亚洲欧美日韩另类| 熟女日韩精品2区| 一级毛片不卡片免费观看| 天天婬欲婬香婬色婬视频播放| 国产成人精彩在线视频50| 欧美精品综合视频一区二区| 日韩大乳视频中文字幕| 欧美日韩精品综合在线一区| 中文字幕在线播放不卡| 久996视频精品免费观看| 91精品福利自产拍在线观看| 热久久综合这里只有精品电影| 日韩一二三区视频精品| 国产精品无码AV片在线观看播放| 亚洲成人手机在线| 国产精品一老牛影视频| 国产区在线观看视频| 日韩色图区| 国产成人综合久久精品下载| 欧美福利在线观看| 成人欧美在线观看| 波多野吉衣一区二区三区av| 亚洲国产日韩在线成人蜜芽| 午夜性爽视频男人的天堂| 国产一区二区福利| 国产永久无码观看在线| 国产一在线| 日本一区二区三区精品国产| 毛片在线区| 99久久国产综合精品2023 | 伊人久久大香线蕉aⅴ色| 亚洲国产精品日韩专区AV| 51国产偷自视频区视频手机观看| 精品国产成人国产在线| 99er这里只有精品| 国产麻豆精品在线观看| 国产91av在线| julia中文字幕久久亚洲| 四虎精品国产永久在线观看| 亚洲国产天堂久久九九九| 91精品国产一区自在线拍| 国产亚洲一区二区三区在线| 国产黄色视频综合| 狠狠色噜噜狠狠狠狠奇米777 | 日韩av高清无码一区二区三区| 国产高颜值露脸在线观看| 三上悠亚精品二区在线观看| 国产精品三级专区| 亚洲福利视频一区二区| 国产精品视频第一专区| 欧美精品亚洲精品日韩专区va| 亚洲AV无码一二区三区在线播放| 国产精品亚洲天堂| 欧美日韩在线观看一区二区三区| 精品久久久无码专区中文字幕| 国产成人精品高清不卡在线| 91成人在线免费视频| 国产91透明丝袜美腿在线| 久久精品电影| 在线亚洲天堂| 99在线视频免费| 亚洲成人网在线观看| 亚洲一区精品视频在线| 亚洲无卡视频| 久久免费看片| 国产伦精品一区二区三区视频优播| AV在线天堂进入| 久草视频精品| 黄色a一级视频| 亚洲免费成人网| 很黄的网站在线观看| 国产日韩精品欧美一区喷| 国产在线观看成人91| 国产簧片免费在线播放| 国产jizz| 一级毛片免费观看久| 久久精品中文字幕免费|