999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

巧用隱圓來解題

2020-11-05 03:35:40張大偉
初中生世界 2020年39期
關鍵詞:模型

文 張大偉

我們常會遇到一些用常規方法不太容易解決或者解決的過程比較煩瑣的問題。這些問題表面看上去與圓無關,但在仔細思考之后,我們會發現如果構造適當的圓,往往能促使問題轉化,獲得“柳暗花明”的效果。下面我們總結出兩種模型,用于發現圖形中隱藏的圓。

例1如圖1,在四邊形ABCD中,BA=BD=BC,∠ABC=80°,則∠ADC=________°。

【分析】由條件“BA=BD=BC”出發,一方面我們可以想到BA=BD,BD=BC,再利用“等邊對等角”得到∠A=∠ADB,∠BDC=∠C,從而推出∠ADC=∠A+∠C,最后利用“四邊形內角和等于360°”求出∠ADC的度數。另一方面,我們可以結合圓的定義(到定點的距離等于定長的點的集合)聯想到利用圓來解決。點A、點D、點C在同一個圓上,根據圓周角的性質就可以求出∠ADC的度數。

解:∵BA=BD=BC,

∴點A、點D、點C在以點B為圓心,AB為半徑的同一個圓上。

如圖2所示,在優弧AMC上取一點E,則∠AEC=∠ABC=40°。

∵四邊形AECD是圓B的內接四邊形,

∴∠AEC+∠ADC=180°,

∴∠ADC=180°-∠AEC=140°。

例2如圖3,矩形ABCD中,AB=3,BC=4,點E是AB邊上一點,且AE=2,點F是邊BC上的任意一點,把△BEF沿EF翻折,點B的對應點為G,連接AG、CG,則四邊形AGCD的面積的最小值為________。

【分析】經過分析,我們不難發現,四邊形AGCD的面積與點G到AC的距離有關。由翻折可知GE=BE,那么我們可以確定點G是在以點E為圓心,BE長為半徑的圓上運動,不難發現當EG⊥AC時,四邊形AGCD的面積最小。再用銳角三角函數求出點G到AC的距離(也可以用相似),最后把點G到AC的距離代入之前表示面積的式子中即可得出結論。

解:∵四邊形ABCD是矩形,

∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,

根據勾股定理,可得AC=5。

∵AB=3,AE=2,

∴點F在BC上的任何位置時,點G始終在AC的下方。

設點G到AC的距離為h。

∵S四邊形AGCD=S△ACD+S△ACG=AD×CD+AC×h=,

∴要使四邊形AGCD的面積最小,即只要h最小。

∵點G是以點E為圓心,BE=1為半徑的圓在矩形ABCD內部的部分點,

∴當EG⊥AC時,h最小,即點E、G、H在一條直線上。

由折疊知∠EGF=∠ABC=90°,

延長EG交AC于H,則EH⊥AC,

在Rt△ABC中,sin∠BAC=,

二、“定邊對定角”模型

在Rt△AEH中,AE=2,sin∠BAC=,

∴EH=AE=,∴h=EH-EG=,

∴S四邊形AGCD最小=。

以上兩道例題,都有共同的特點:出現了公共端點和等長線段。我們由公共端點想到圓的圓心,由等長線段想到圓的半徑,從而根據圓的定義“到定點(圓心)的距離等于定長(半徑)的點的集合”構造出輔助圓,得以巧妙地解題。這個模型,我們可以稱之為“共端點等線段”模型。

例3如 圖5,在Rt△ABC中,∠ACB=90°,AC=6,BC=4。點P是△ABC內部的一個動點,且滿足∠PAC=∠PCB,求線段BP長的最小值。

【分析】根據已知條件可以推出∠APC=90°,根據“直角對直徑”可以判斷出點P在以AC為直徑的⊙O上。連接OB與⊙O交于點P,此時PB最小,再利用勾股定理求出OB,從而解決問題。

解:∵在△ABC中,∠ACB=90°,

∴∠ACP+∠PCB=90°。

∵∠PAC=∠PCB,

∴∠CAP+∠ACP=90°,

∴∠APC=90°,

∴點P在以AC為直徑的⊙O上。

連接OB、BP、OP,則BP+OP≥OB。

當點O、P、B三點共線時取等號,即連接OB與⊙O交于點P,此時PB最小。

在Rt△CBO中,

∵∠OCB=90°,BC=4,OC=3,

∴OB==5。

∵BP+OP≥OB,

∴BP≥OB-OP=5-3=2。

∴BP最小值為2。

例4如圖7,在△ABC中,∠C=90°,AC=BC=1,P為△ABC內一個動點,∠PAB=∠PBC,求CP的最小值。

【分析】根據已知條件可以推出∠APB=135°,從而確定點P在以AB為弦的⊙O上運動。連接OA、OB,可證四邊形OACB是正方形,然后用勾股定理求出OC=。再連接OC、OP、CP,發現當點O、P、C在一條直線上時,PC有最小值。

解:∵在△ABC中,∠C=90°,AC=BC=1,

∴∠CAB=∠CBA=45°。

∵∠PAB=∠PBC,∠CBA=∠PBC+∠PBA=45°,∴∠PAB+∠PBA=45°,

∴∠APB=180°-(∠PAB+∠PBA)=135°,

∴點P在以AB為弦的⊙O上。

∵∠APB=135°,∴∠AOB=90°,

∴∠OAB=∠OBA=45°,

∴∠CAO=∠CAB+∠OAB=90°,

同理∠CBO=90°,

∴四邊形ACBO為矩形。

又∵OA=OB,∴四邊形AOBC為正方形,

∴OA=OB=1,∴OP=1,OC=。

當點O、P、C在一條直線上時,PC有最小值,∴PC的最小值=OC-OP=。

以上兩個例題,都有共同的特點:∠P保持不變,∠P的對邊長d保持不變,則∠P的頂點P的軌跡是圓弧。根據圓周角的有關性質,我們可以構造出輔助圓,這個模型可以被稱為“定角對定邊”模型。

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 日韩高清欧美| 高清免费毛片| 夜色爽爽影院18禁妓女影院| 亚洲av无码久久无遮挡| 亚洲色图在线观看| 日本日韩欧美| 国产无码高清视频不卡| 欧洲精品视频在线观看| 欧美a网站| 成人韩免费网站| 亚洲国产成人自拍| 国产美女在线观看| 成人中文字幕在线| 精品久久久久无码| 夜夜操狠狠操| 亚洲欧美自拍中文| 无码一区二区波多野结衣播放搜索| 尤物特级无码毛片免费| 中文无码伦av中文字幕| 国产精品自拍露脸视频| 国产精品久久久免费视频| 国产男人天堂| 日本欧美一二三区色视频| 日本三级黄在线观看| 在线观看国产小视频| 国产精品九九视频| 国产美女无遮挡免费视频| 18禁不卡免费网站| 国产视频欧美| 色成人亚洲| 国产二级毛片| 真实国产乱子伦高清| 免费人成又黄又爽的视频网站| 婷婷五月在线视频| 欧美成人午夜在线全部免费| 免费看av在线网站网址| 丁香亚洲综合五月天婷婷| 精品综合久久久久久97| 97青草最新免费精品视频| 国产拍揄自揄精品视频网站| 女人18毛片一级毛片在线| 亚洲综合香蕉| 成人在线综合| 狠狠色综合久久狠狠色综合| 久操线在视频在线观看| 亚洲精品制服丝袜二区| 精品国产成人高清在线| 日韩第九页| 国产午夜精品一区二区三区软件| 好久久免费视频高清| 国产毛片一区| 国产视频你懂得| 久久精品这里只有国产中文精品| 欧美啪啪网| 欧美第一页在线| 久久国产精品国产自线拍| 欧美一区二区丝袜高跟鞋| 热99re99首页精品亚洲五月天| 97色伦色在线综合视频| 国产在线欧美| 国产美女精品一区二区| 国产玖玖玖精品视频| 91区国产福利在线观看午夜| 国产一区免费在线观看| 成人永久免费A∨一级在线播放| 中文毛片无遮挡播放免费| 色欲综合久久中文字幕网| 国产福利小视频在线播放观看| 免费看美女自慰的网站| 黄色在线不卡| 91福利免费视频| 日韩精品成人在线| 在线观看亚洲国产| 国内精品视频在线| 久久香蕉欧美精品| 国产激情在线视频| 六月婷婷综合| 亚洲精品国产乱码不卡| 免费jizz在线播放| 在线观看国产小视频| 亚卅精品无码久久毛片乌克兰 | 国产精品视频观看裸模|