宋穎昌

AI應(yīng)用于工業(yè)互聯(lián)網(wǎng)平臺(tái)設(shè)備層、邊緣層、平臺(tái)層、應(yīng)用層等四類應(yīng)用場(chǎng)景,正在推動(dòng)傳統(tǒng)生產(chǎn)模式向?qū)崟r(shí)感知、動(dòng)態(tài)分析、科學(xué)決策、精準(zhǔn)執(zhí)行和優(yōu)化迭代的智能化生產(chǎn)模式轉(zhuǎn)變
當(dāng)前,以深度學(xué)習(xí)為主導(dǎo)的人工智能(AI)進(jìn)入推廣培育期,在醫(yī)療、金融、零售、安防、交通、能源等領(lǐng)域的探索步伐不斷加快,自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)、精準(zhǔn)營(yíng)銷、自動(dòng)駕駛等人工智能應(yīng)用市場(chǎng)增長(zhǎng)迅猛。但在工業(yè)領(lǐng)域,受數(shù)據(jù)、算法、算力等因素制約,AI應(yīng)用的廣度和深度受到限制。近年來(lái),隨著工業(yè)互聯(lián)網(wǎng)平臺(tái)的快速崛起,其海量的數(shù)據(jù)、內(nèi)嵌的高效算法和對(duì)算力的強(qiáng)大支撐能力,為AI在工業(yè)領(lǐng)域的發(fā)展應(yīng)用提供了土壤。尤其是AI應(yīng)用于工業(yè)互聯(lián)網(wǎng)平臺(tái)設(shè)備層、邊緣層、平臺(tái)層、應(yīng)用層等四類應(yīng)用場(chǎng)景,正在推動(dòng)傳統(tǒng)生產(chǎn)模式向?qū)崟r(shí)感知、動(dòng)態(tài)分析、科學(xué)決策、精準(zhǔn)執(zhí)行和優(yōu)化迭代的智能化生產(chǎn)模式轉(zhuǎn)變,為工業(yè)轉(zhuǎn)型升級(jí)賦能。
工業(yè)互聯(lián)網(wǎng)平臺(tái)是人工智能應(yīng)用的重要載體
工業(yè)互聯(lián)網(wǎng)平臺(tái)覆蓋全流程生產(chǎn)數(shù)據(jù)。數(shù)據(jù)是應(yīng)用人工智能的“燃料”。工業(yè)互聯(lián)網(wǎng)平臺(tái)從數(shù)據(jù)“量”和“質(zhì)”兩個(gè)維度入手,提升工業(yè)場(chǎng)景數(shù)據(jù)集的廣度與深度,為人工智能應(yīng)用提供支撐。
從“量”的方面看,工業(yè)互聯(lián)網(wǎng)平臺(tái)匯聚了數(shù)以千萬(wàn)計(jì)的設(shè)備和傳感器,對(duì)異構(gòu)系統(tǒng)、運(yùn)營(yíng)環(huán)境、人員信息等要素實(shí)施泛在感知、高效采集和云端匯聚,實(shí)現(xiàn)了海量數(shù)據(jù)的廣泛集成。
從“質(zhì)”的方面看,工業(yè)互聯(lián)網(wǎng)平臺(tái)通……