郭南飛,韓智勇,史 瑞,李 浩,劉 潔
農村垃圾厭氧-準好氧時空聯合生物反應器中微生物群落分析
郭南飛1,2,3,韓智勇1,2,3※,史 瑞1,2,3,李 浩1,2,3,劉 潔4
(1. 地質災害防治與地質環境保護國家重點實驗室(成都理工大學),成都 610059;2. 國家環境保護水土污染協同控制與聯合修復重點實驗室(成都理工大學),成都 610059;3. 成都理工大學生態環境學院,成都 610059;4. 成都大學建筑與土木工程學院,成都 610106)
生物反應器是處理農村中小型固體廢物的有效技術,該研究以時空聯合型厭氧-準好氧生物反應器(SASAB,Sequentially Anaerobic/Semi-Aerobic Bioreactor)為研究對象,利用16S rRNA高通量測序分析了STASAB中的微生物群落,以期為該反應器的高效運行提供理論依據。結果表明,各生物反應器處理單元中將C1、C2和C3生物反應器設為試驗組,分別在第66、101和246天開始依次按SASAB操作運行的優勢菌門為(18.5%~26.6%)(14.9%~26.6%)(6.6%~25.2%)(8.2%~24.0%)(6.9%~13.8%)。C3處理單元在厭氧階段中的優勢菌屬為vadinBC27_wastewater-sludge_group_2norank_f_(產甲烷菌)等。在STASAB各處理單元中發現了硝化細菌以及大量的反硝化細菌unclassified_o_AKYG587norank_f_等。Venn圖與PCA分析顯示C1、C2具有相似的微生物群落結構,C3中的特有菌屬高于其他反應器;RDA(Redundancy Analysis)分析表明C1、C2(STASAB)中的微生物群落具有更高的穩定性,不易受到外界環境因素的影響。因此,STASAB的空間布局和運行方式能夠有效發揮厭氧和準好氧生物反應器的優勢,高效促進產甲烷菌、硝化菌和反硝化菌的共存和生長代謝,實現農村生活垃圾的快速降解。
農村;微生物群落;垃圾處理;高通量測序;時空聯合型厭氧-準好氧生物反應器
隨著農村生活水平的不斷提高,農村生活垃圾量逐年遞增,我國每年產生近2.0×108t農村生活垃圾[1],由于缺乏有效管理,生活垃圾處理率僅為50%左右[2]。雖然社會、經濟、自然和其他因素會使農村生活垃圾具有顯著的區域差異[3],但農村生活垃圾普遍具有產率低、產量高、有機物含量高等特征[4],基于這些特征,生物反應器被廣泛認為是農村地區中小型固體廢物處理的有效技術[5]。生物反應器技術通過滲濾液回灌,營養物的添加,調控pH值,增加氧氣含量,微生物接種和調控溫度來加強微生物作用的過程,加速垃圾中有機物的降解和轉化,促進垃圾快速穩定。根據反應器運行方式的不同,生物反應器可分為厭氧、好氧、準好氧和聯合生物反應器等類型[6]。
目前,大部分學者將垃圾滲濾液回灌作為主要調控手段對生物反應器進行了廣泛研究。有學者發現厭氧生物反應器具有加速填埋垃圾穩定、降低滲濾液污染強度、可回收利用甲烷氣體等優點[7],但由于填埋初期的生活垃圾迅速水解,會導致有機酸和氨氮積累[8];好氧或準好氧生物反應器對垃圾滲濾液中的有機物和氨氮的去除效果更好[9],但會抑制甲烷的產生并導致能量無法回收[10],此外,好氧生物反應在進行曝氣時還會消耗大量能源[11]。聯合型生物反應器由不同類型生物反應器串聯組合構成,能夠充分利用不同類型生物反應器的優勢[12-13]。前期研究表明厭氧-準好氧聯合型生物反應器(SASAB, Sequentially Anaerobic/Semi-Aerobic Bioreactor)不但能有效加速垃圾的降解速率和提高有機物、氮的去除率[14-15],并且能克服不同單一類型生物反應器的不足,這為農村生活垃圾的處理提供了一種新技術。韓智勇等基于傳統生物反應器的不足以及前人對SASAB的研究,提出了時空聯合型厭氧-準好氧生物反應器(STASAB)技術,STASAB通過將多個SASAB在不同時間和空間上進行結合,極大地提高了氮的去除率和有機物的降解速度,實現了垃圾滲濾液的零排放[16],但其運行機理有待進一步研究。因此,本文通過對STASAB中微生物菌群的結構特征進行分析,以期闡明STASAB的脫氮除碳機理,進一步證實STASAB可為農村生活垃圾的處理處置提供一種高效的解決途徑。
厭氧-準好氧生物反應器均采用500 mm×1 200 mm的PVC柱,模型裝置如圖1所示,生物反應器自下而上依次為:底座+200 mm礫石層+土工布+900 mm垃圾層+50 mm礫石層。

1.密封蓋 2.布水器 3.氣體導排孔 4.滲濾液回灌孔 5.通風管 6.閥門 7.滲滲液收集管 8.礫石層 9.垃圾層
1)裝填
本試驗裝填的生活垃圾取自成都理工大學住宅生活小區,按照2015年在中國西南部四川省農村地區生活垃圾的濕基組分質量分數(廚余(74.30%):紙(10.64%):紡織(5.93%):木竹(3.68%):灰土(5.84%):磚瓦陶瓷(0.52%)),剔除塑料、金屬后分別對4組反應器進行裝填。反應器的裝填高度為90 cm,裝填質量為125 kg,裝填密度為700 kg/m3。
2)運行安排
本試驗的運行參考Han等研究中的試驗過程[16]。設置C0生物反應器為對照組,并按厭氧-準好氧生物反應器(SASAB)運行,即在垃圾裝填后,密封反應器,通過溫控系統保持反應器溫度在(35±2)℃,進行滲濾液回灌(回灌頻率為3 d/次,回灌速率為600 mL/min);有機垃圾在時間序列上依次經歷水解酸化(第1~203 天)、產甲烷階段(第206~246 天)。
為使C1、C2快速進入產甲烷階段,從反應器C0中各抽取1L滲濾液混入C1、C2滲濾液后進行回灌,并添加30%的NaOH溶液調節pH值至8.0,待C1進入產甲烷階段后停止。當厭氧發酵階段的日產氣量小于10 L和滲濾液中的COD濃度低于5000 mg/L時,打開密封蓋和通風管閥門,使其與空氣聯通,依靠內外溫差形成的壓力差實現自然通風,從而進入準好氧反應階段(第291~482 天)。將C1、C2和C3生物反應器設為試驗組,分別在第66、101和246 天開始依次按SASAB操作運行,實現了C1、C2、C3在時間上的結合。從293 天開始,C1、C2、C3分別處于準好氧階段、產甲烷階段和水解酸化階段,通過將3個反應器產生的滲濾液混合后回灌(回灌量等于產生量),從而實現3個處于不同階段的反應器在空間上的聯合,形成時空聯合型厭氧-準好氧生物反應器(STASAB)。
試驗結束時,從每個生物反應器的上、中、下層各取1個樣,將同一生物反應器所采集的樣品充分混合后均分為3份,1份作為檢測樣品,另2份作為平行樣。樣品用液氮速凍至?80 ℃以下,并置于干冰中密封保存,送至上海美吉生物醫藥科技有限公司完成16S rRNA高通量測序。樣本DNA提取采用美國MP公司的Fast-DNA SPINTM kit for soil試劑盒,DNA完整性、純度與濃度的檢測采用瓊脂糖凝膠電泳法和分光光度計(NanoDrop2000)。選用515F(GTGCCAGC-MGCCGCGC-3′)和970R(CCGTCAATTCMTTTRAGTTT-3′)為PCR引物完成V4-V5區片段擴增并回收擴增產物,Miseq建庫測序。
利用origin 2018統計分析各反應器中脫氮效果以及CH4產生量?;冖?Sanger平臺,使用FLASH和Trimmomatic軟件對測序獲得的雙端序列數據質控。對相似度為97%的OTU進行優化序列聚類并按最小樣本序列數抽平。為了獲得分類學信息,采用RDP classifier算法對相似度為97%的OTU進行分類學劃分,細菌的比對數據庫為Silva庫。在OTU水平上利用mothur計算分析不同生物反應器中微生物群落的Alpha多樣性。基于tax_summary_a數據表,利用R語言繪制柱狀圖,揭示不同生物反應器中微生物群落組成和豐度。利用R語言繪制Venn圖,結合基于bary-curtis距離算法的PCA圖分析不同生物反應器微生物結構組成差異。利用R語言vegan包繪制RDA分析圖來分析微生物群落與環境因子之間的相關性。
根據之前的研究,試驗結束時,C0、C1、C2生物反應器中TN去除率分別為60.3%、95.5%和92.3%;COD去除率分別為93.01%、96.85%和95.74%,且C1、C2、C3(STASAB)水解酸化階段的持續時間遠小于C0(SASAB),詳細的運行效果見Han等[16]所述。表明STASAB的脫氮效果顯著高于SASAB,且STASAB能夠解決厭氧干發酵過程中的“酸抑制”和“氨積累”難題,快速啟動產甲烷階段,促進有機污染物的快速降解。為了闡明STASAB的脫氮除碳機理,試驗結束時對4個反應器中的微生物群落結構特征以及環境影響因素進行了深入分析。
選取Shannon和Chao指數繪制稀釋曲線,如圖2所示,所有樣本的稀釋曲線均趨于平緩,表明本次試驗測序數據可靠,揭示物種全面。由多樣性指數(表1)可知,樣本的Coverage指數均在99%水平以上,說明本次測序深度合理,試驗結果可靠性高。
Shannon指數呈C3>C0>C1>C2規律,Simpson指數揭示的規律正好相反,表明C3中微生物多樣性最高。Chao、Ace指數呈C3>C1>C2>C0規律,表明C1生物反應器物種豐富度最高,C0生物反應器物種豐富度最低。

注:C0~C3為不同生物反應器。

表1 生物反應器中微生物屬水平多樣性指數
注:Shannon、Simpson為物種多樣性指數;Chao、Ace為物種豐富度指數;Coverage表示物種覆蓋率。
Note: Shannon and Simpson are the community diversity index; Chao and Ace are the community richness index; Coverage represents community coverage.
本次測序所得序列共聚類45個門,893個屬。在門水平下合并豐度在1%以下的物種(圖3),4個反應器樣本中的優勢菌門依次為,它們在反應器中的豐度分別介于18.5%~26.6%、14.9%~26.6%、6.6%~25.2%、8.2%~24.0%、6.9%~13.8%之間。其中是生物降解碳氮磷的主要細菌門類[17]。有研究表明,為革蘭氏陰性菌,在硝酸鹽降解,硫氧化以及有機物降解去除等方面具有重要作用[18]。主要為好氧細菌,可以將反應器中的糖類和蛋白質降解成水溶性化合物[19],因此在準好氧階段運行時間最長的C0中的相對豐度更大。為發酵菌門,多為厭氧細菌,可以將小分子的有機物轉化成水溶性醇類、各種有機酸以及H2O、CO2、H2等,并且在蛋白質的降解中起重要作用[20],由于C3在試驗結束時還處于厭氧階段,因此其中的相對豐度遠大于其他反應器,這說明反應器中有機物能夠在厭氧發酵階段被快速降解。屬于異養菌門,可以分解有機物質供自身生長使用[21]。在反應器中還檢測到少量的硝化細菌[22]。此外,菌門中存在大量氨基酸降解和產氫產乙酸的功能細菌,在連接發酵型細菌和產甲烷菌中起重要作用[23],因此在產甲烷階段的C3中的相對豐度明顯高于其他生物反應器。

圖3 生物反應器中門水平下的微生物物種豐度

注:0-4表示顏色梯度代表的數值,數值越大,表示物種相對豐度越大。
在屬水平下,對各反應器中豐度排名前25的物種進行分析(圖4),從圖4中可以看出不同生物反應器中的優勢菌屬具有顯著差異,各優勢菌屬的主要功能如表2所示。norank_f_vadinBC27_wastewater-sludge_group_2等菌類在C3生物反應器中的豐度相對更高,這是因為它們都是嚴格厭氧細菌,C3中的厭氧條件為這些細菌提供更好的生存環境。相反,等好氧、需氧菌在處于準好氧階段的C0、C1、C2中的豐度相對更高。此外,C1、C2生物反應器中還檢測出Norank_f_Norank_f_Norank_f_等厭氧細菌,這是由STASAB系統中C1、C2、C3進行滲濾液混合回灌導致。

表2 生物反應器中優勢菌屬
由venn圖(圖5a)可知,C0、C1、C2、C3中的共有菌屬為379個,其中C0的特有菌屬為19個,C1、C2、C3的特有菌屬分別為C0的2.11、1.05、7.26倍,同時C0和STASAB其他反應器的共有菌屬(C0和C1、C0和C2、C0和C3分別為462、458、400)明顯低于STASAB反應器之間的共有菌屬(C1和C2、C1和C3、C2和C3分別為536、474、505),尤其是C1和C2的群落結構最為相似,其共有菌屬占總菌屬的61.2%,這主要是由于STASAB時空聯合的運行操作方式影響。
主成分分析(PCA)如圖5b所示,由PCA分析結果可知,2種主成分PC1和PC2可解釋總變異的57.07%和22.13%,C1和C2主要集中在PC1正軸和PC2正軸,且重合部分較大,表明C1和C2反應器微生物群落結構較相似,這是因為它們都處于STASAB系統中的準好氧階段,且進行滲濾液混合回灌操作。而C0樣品主要集中在PC1負軸和PC2負軸,與C1、C2中微生物群落結構差異較大,一方面是由于C0經歷了更長時間的準好氧階段,另一方面是由于C1、C2與處于厭氧階段的C3反應器進行滲濾液混合回灌,C3反應器中的特有菌屬進入C1、C2。C3樣品主要集中在PC1負軸與PC2正軸,這是由于C3處于嚴格的厭氧產甲烷階段而其他反應器均處于準好氧階段,這與venn圖分析結果一致。

圖5 生物反應器中微生物群落組成差異
冗余分析(RDA,Redundancy Analysis)如圖6所示,NH4+-N與溶解性有機碳(DOC Dissolved Organic Carbon)、氧化還原電位(ORP,Oxidation-Reduction Potential)、pH夾角均為鈍角,表明NH4+-N與DOC、ORP、pH呈負相關。這是由于較高的DOC、ORP以及堿性環境均能促進硝化細菌的生長,有利于生物反應器中的氨氮轉化成硝氮[45]。從樣品與環境因子的關系看,C0受環境因子DOC、ORP、pH的影響更大,C3受NH4+-N的影響較大,這是由于C0進入準好氧階段的時間最長,好氧環境最充分,好氧微生物更多,試驗結束時,其DOC含量相對STASAB明顯更低,大多數好氧微生物處于缺乏碳源狀態,因此,DOC和ORP對C0微生物的影響更大;而C3處在厭氧產甲烷階段,此階段氨氮積累較多,所以受NH4+-N影響明顯;同時通過STASAB的滲濾液混合回灌運行操作,C3為C1和C2補充了大量的碳源,實現了pH的調節、營養物的添加、酸抑制和氨抑制的消除,為C1和C2中的微生物提供了適宜的生長代謝環境,所以C1、C2對環境因子反應不明顯,這表明STASAB中的微生物群落多樣性更大,穩定性更強,不易受到外界環境的影響。

注:DOC為溶解性有機碳;ORP為氧化還原電位。
STASAB通過滲濾液混合回灌,將處于不同階段的生物反應器在時間和空間上形成了聯合,反應器內部空間同時存在厭氧、兼氧、好氧環境,同時實現了pH調節、微生物接種、營養物添加,促進了微生物的多樣性和穩定性,解決了厭氧干發酵過程中的“酸抑制”和“氨積累”難題。其作用機理如圖7所示。

注:圖中英文為參與相關反應細菌。
對于有機氮,首先,處于厭氧發酵階段的C3中氨氮迅速積累(從232.97至901.13 mg/L),是由于蛋白質、氨基酸等含氮物質被優勢菌門以及其他厭氧微生物高速降解[20];產生的氨氮通過準好氧階段的C1和C2中的硝化細菌以及亞硝化細菌norank-o-JG30-KF-CM45的作用被轉化成硝氮[22,44],最后被STASAB中大量的反硝化菌norank_f_、、AKYG587、norank_f_、unclassified_o_等還原成氮氣去除[16]。此外,STASAB中還發現了短程硝化-反硝化細菌以及厭氧氨氧化菌(非優勢菌屬)[31,46],這表明反應器中還發生了短程硝化-反硝化和厭氧氨氧化反應,進一步改善了STASAB的脫氮效果。
對于有機物,首先,STASAB中的糖類、蛋白質等有機物被降解成小分子的有機物,可能是由于反應器中、vadinBC27_wastewater-sludge_group、_2等厭氧菌的作用[26-27,43];其次,小分子有機物在unclassified_o_等的作用下被轉化為醇類、各種有機酸以及H2O、CO2、H2等[40];同時,norank_f_可以將有機酸分解為乙酸并產生氫氣,為消耗氫氣的產甲烷菌提供更好的生存環境[30];最后,在C3處理單元中優勢菌屬產甲烷細菌norank_f_的作用下[26],甲酸、乙酸、H2等被轉化為CH4和CO2。
1)各生物反應器物種豐富度呈C1>C3>C2>C0規律;為生物反應器中主要的優勢菌門。C0中的優勢菌屬為和norank_o_AKYG1722。C1、C2中優勢菌屬為norank_f_、;C3中優勢菌屬為、norank_f_、vadinBC27_wastewater-sludge_ group、_2。
2)C3中的特有菌屬數量(138)高于其他生物反應器(C0、C1、C2分別為19、40、21),C1和C2中微生物共有菌屬為536,占總菌屬的61.2%,群落結構較相似。同時,SASAB系統中的C0處理單元和STASAB系統中的C3處理單元受環境因子NH4+-N、DOC、ORP、pH的影響較大,而STASAB系統中的C1、C2處理單元受到環境因子NH4+-N、DOC、ORP、pH的影響小。
3)STASAB可以將處于不同階段的生物反應器在時間和空間上整合,高效促進了產甲烷菌、硝化菌以及反硝化菌的共存和代謝。反應器內部形成厭氧、兼氧、好氧的環境,同時實現了pH調節、微生物接種、營養物添加,促進了微生物群落結構的多樣性和穩定性,有效解決了厭氧干發酵過程中的“酸抑制”和“氨積累”難題,可為農村生活垃圾的處理處置提供一種高效的處理技術。
[1] 胡洋,仲璐,王璐. 農村生活垃圾分類及資源化利用現狀和問題淺析[J]. 環境衛生工程,2019,27(6):64-67.
Hu Yang, Zhong Lu, Wang Lu. Analysis on the current situation and problems of rural domestic waste classification and resource utilization[J]. Environmental Sanitation Engineering, 2019, 27(6): 64-67. (in Chinese with English abctract)
[2] 王君. 我國農村垃圾分類問題現狀與改進對策[J]. 環境衛生工程,2017,25(1):24-26.
Wang Jun. Present situation and improvement solutions of waste classification problems in the rural area of China[J]. Environmental Sanitation Engineering, 2017, 25(1): 24-26. (in Chinese with English abctract)
[3] Han Z Y, Liu Y, Zhong M, et al. Influencing factors of domestic waste characteristics in rural areas of developing countries[J]. Waste Management, 2018, 72: 45-54.
[4] 韓智勇,費勇強,劉丹,等. 中國農村生活垃圾的產生量與物理特性分析及處理建議[J]. 農業工程學報,2017,33(15):1-14.
Han Zhiyong, Fei Yongqiang, Liu Dan, et al. Yield and physical characteristics analysis of domestic waste in rural areas of China and its disposal proposal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 1-14. (in Chinese with English abctract)
[5] 邱才娣,何若,陳松妹,等. 一種新型的農村生活垃圾資源化工藝技術研究[J]. 環境科學,2009,30(3):308-314.
Qiu Caidi, He Ruo, Chen Songmei, et al. Novel resources utilization technique for rural domestic refuse[J]. Environmental Science, 2009, 30(3): 308-314. (in Chinese with English abctract)
[6] 李啟彬,劉丹. 生物反應器填埋場理論與技術[M]. 北京:中國環境科學出版社,2010.
[7] 李啟彬,劉丹,歐陽峰,等. 厭氧-準好氧運行加速生物反應器填埋場垃圾穩定的研究[J]. 環境科學,2006,27(2):371-375.
Li Qibin, Liu Dan, Ouyang Feng, et al. Acceleration the stabilization of waste in bioreactor landfill by sequential anaerobic and semi-aerobic operation[J]. Environmental Science, 2006, 27(2): 371-375. (in Chinese with English abctract)
[8] Han Z Y, Liu D, Li Q B, et al. Evolution of leachate quantity and quality in the anaerobic-semiaerobic bioreactor landfill[J]. Environ. Sci, 2012a, 33(11): 3873-3880.
[9] 徐文龍,屈志云,梁前芳,等. 好氧填埋技術對滲濾液水質變化的影響[J]. 環境工程,2010,28(5):9-12.
Xu Wenlong, Qu Zhiyun, Liang Qianfang, et al. Influence of aerobic landfill technology on the change in leachate water quality[J]. Environmental Engineering, 2010, 28(5): 9-12. (in Chinese with English abctract)
[10] Rizkowski M, Stegmann R. Controlling greenhouse gas emissions through landfill in situaeration[J]. International Journal of Greenhouse Gas Control, 2007, 1(3): 281-288.
[11] Slezak R, Krzystek L, Ledakowicz S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions[J]. Waste Management, 2015, 43: 293-299.
[12] Morello L, Raga R, Lavagnolo M C, et al. The S.An.A. concept: Semi-aerobic, anaerobic, aerated bioreactor landfill[J]. Waste Management, 2017, 67: 193-202.
[13] Sun X J, Zhang H X, Cheng Z W. Use of bioreactor landfill for nitrogen removal to enhance methane production through exsitu simultaneous nitrification denitrification and in situ denitrification[J]. Waste Management, 66: 97-102.
[14] 韓智勇. 厭氧-準好氧聯合型生物反應器填埋場穩定化規律及運行策略研究[D]. 成都:西南交通大學,2011.
Han Zhiyong. A Study on The Stabilization and Operation Strategies Based on the Anaerobic-Semiaerobic Bioreacter Landfill[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese with English abctract)
[15] 賀艷娟. 厭氧-準好氧聯合型生物反應器填埋場氮污染物遷移轉化研究[D]. 成都:西南交通大學,2014.
He Yanjuan. A Study on The Migration and Transfer of Nitrogen Contaminants in The Anaerobic-Semiaerobic Bioreacter Landfill[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abctract)
[16] Han Zhiyong, Zeng Dan, Mou Zishen, et al. A novel spatiotemporally anaerobic/semi-aerobic bioreactor for domestic solid waste treatment in rural areas[J]. Waste Management, 2019, 86: 97-105.
[17] Wang Zhao, Yang Yuyin, Dai Yu, et al. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community[J]. Journal of Hazardous Materials, 2015, 286: 306-314.
[18] Chen C, Xu X, Xie P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301.
[19] He T, Guan W, Luan Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J]. Applied Microbiology & Biotechnology, 2016, 100(3): 1479-1488.
[20] Kampmann K, Ratering S, Kramer I, et al. Unexpected stability of bacteroidetes and firmicutes communities in laboratory biogas reactors fed with different defined substrates[J]. Applied and Environmental Microbiology, 2012, 78(7): 2106-2119.
[21] 黃斯藝,何江濤,勞天穎,等. 納米乳化油修復硝酸鹽污染地下水過程中的微生物特征模擬實驗研究[J]. 環境科學學報,2020,40(4):1242-1249.
Huang Siyi, He Jiangtao, Lao Tianying, et al. Experimental study of microbial characteristics in the process of in-situ nitrate pollution remediation by nanoemulsified oil[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1242-1249. (in Chinese with English abctract)
[22] Rui Han, Derui Zhu, Jiangwa Xing, et al. The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau[J]. Archives of Microbiology, 2020, 202(3): 525-538.
[23] 占迪,何環,廖遠松,等. 褐煤強化產甲烷菌群的群落分析及條件優化[J]. 微生物學報,2018,58(4):684-698.
Zhan Di, He Huan, Liao Yuansong, et al. Community structure analysis of methanogenic flora and optimization for bioaugmentation methane generation from lignite[J]. Acta Microbiologica Sinica, 2018, 58(4): 684-698. (in Chinese with English abctract)
[24] Ding Y, Liang Z, Guo Z, et al. The performance and microbial community identification in mesophilic and atmospheric anaerobic membrane bioreactor for municipal wastewater treatment associated with different hydraulic retention times[J]. Water, 2019, 11(1): 289-291.
[25] Nazina T N, Sh S D, Babich T L, et al. Phylogenetic diversity of microorganisms from the sludge of a biogas reactor processing oil-containing and municipal waste[J]. Microbiology, 2018, 87(3): 416-424.
[26] 張瑜. 時空聯合型厭氧-準好氧生物反應器中生活垃圾的穩定化規律及機理研究[D]. 成都:成都理工大學,2019.
Zhang Yu. Study on Stabilization Rules and Mechanism of Solid Waste in Spatiotemporally Anaerobic/semi-aerobic Bioreactor[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abctract)
[27] 孫井梅,劉曉朵,湯茵琪,等. 微生物-生物促生劑協同修復河道底泥:促生劑投量對修復效果的影響[J]. 中國環境科學,2019,39(1):353-359.
Sun Jingmei, Liu Xiaoduo, Tang Yinqi, et al. Microorganism and biostimulant collaboratively remediate river sediment: Influence of biostimulant quantity on repair performance[J]. China Environmental Science, 2019, 39(1): 351-357. (in Chinese with English abctract)
[28] Sun L, Toyonaga M, Ohashi A, et al. Lentimicrobium saccharophilum gen. nov. sp. nov. a strictly anaerobic bacterium representing a new family in the phylum bacteroidetes, and proposal of Lentimicrobiaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(7): 55-67.
[29] Ma Haitong, Wu Ming, Liu Hui, et al. Study on enhancing sludge methanogenesis by adding acetylene black and effect on the characteristics & microbial community of anaerobic granular sludge[J]. Royal Society of Chemstry, 2019, 9(40): 23086-23095.
[30] Shuang X, Junqin Y, Meihaguli A, et al. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter[J]. Biomed Research International, 2018, 1: 1-8.
[31] Zhou X, Zhang Z, Zhang X, et al. A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater[J]. Bioresource Technology, 2018, 254: 50-55.
[32] Liu Yi, Qiao Jiangtao, Yuan Xianzheng, et al. Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(5): 1756-1762.
[33] Zeng Y, Selyanin V, Luke? M, et al. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. Nov. and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2410-2419.
[34] 閆苗苗,張海涵,釗珍芳,等. 生物脫氮技術中好氧反硝化細菌的代謝及應用研究進展[J]. 環境科學研究,2019,33(3):668-676.
Yan Miaomiao, Zhang Haihan, Zhao Zhenfang, et al. Research progress of metabolism ang application of aerobic denitrifying bacteria in biological denitrifyication technology[J]. Reseach of Environmental Sciences, 2019, 33(3): 668-676. (in Chinese with English abctract)
[35] 王培明,李長玲,黃翔鵠,等. 溫度、鹽度和光照度對菌藻聯合體氨氮吸收的影響[J]. 廣東海洋大學學報,2020,40(3):40-47.
Wang Peiming, Li Changling, Huang Xianghu, et al. Effects of temperature, salinity and light on NH4+-N sbsorption of bacteria-microalgae consortia[J]. Journal of Guangdong Ocean University, 2020, 40(3): 40-47. (in Chinese with English abctract)
[36] Wang Y, Xie H, Wang D, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268.
[37] Zhiqing Zhao, Xiaoli Sheng, Tucai Zhen, et al. Evaluation of inoculum sources for aerobic treatment of 2,3,4-Trifluoroaniline during start-up and shock[J]. Water Air Soil Pollut, 2019, 230(12): 2-16.
[38] 陳廣鵬. 好氧顆粒污泥-膜生物反應器的長期運行特征及其顆粒粒徑的快速調整[D]. 廣州:廣東工業大學,2019.
Chen Guangpeng. Long-term Operation Characteristics of Aerobic Granular Sludge-Membrane Bioreactor and Adjustment of Its Granule Size[D]. Guangzhou: Guangdong University of Technology, 2019. (in Chinese with English abctract)
[39] 高峰,馬丙瑞,李姍姍,等. 鍍鎳多壁碳納米管對序批式反應器性能及其微生物群落的影響[J]. 中國海洋大學學報,2018,49(9):121-129.
Gao Feng, Ma Bingrui, Li Shanshan, et al. Effects of MWCNTs-Ni on the performence and microbial community of sequencing batch reactor[J]. Periodical of Ocean University of China, 2018, 49(9): 121-129. (in Chinese with English abctract)
[40] 李衛平,郝夢影,敬雙怡,等. SMBBR處理焦化廢水性能及菌群結構響應關系[J]. 中國環境科學,2019,39(8):3332-3339.
Li Weiping, Hao Mengying, Jing Shuangyi, et al. Performance and flora structure response relation in the SMBBR treatment of the coking wastewater[J]. China Environmental Science, 2019, 39(8): 3332-3339. (in Chinese with English abctract)
[41] Podosokorskaya O A, Bonch-Osmolovskaya E A, Beskorovaynyy A V, et al. Mobilitalea sibirica gen. nov. sp. nov. a halotolerant polysaccharide-degrading bacterium[J]. International Journal of Systematic & Evolutionary Microbiology, 2014, 64: 2657-2661.
[42] 王家楠,蔣勇軍,賀秋芳,等. 中梁山巖溶槽谷區荒草地土壤微生物群落對隧道建設的響應[J]. 生態學報,2019,39(16):255-268.
Wang Jianan, Jiang Yongjun, He Qiufang, et al. Response of soil microbial community in grassland to tunnel construction in the karst trough valley, Zhongliang Mountain, Chongqing[J]. Acta Ecologica Sinica, 2019, 39(16): 6136-6145. (in Chinese with English abctract)
[43] Saha Shouvik, Jeon Byong-Hun, Kurade Mayur B, et al. Interspecies microbial nexus facilitated methanation of polysaccharidic wastes[J]. Bioresource Technology, 2019, 289: 887-907.
[44] Huang X, Dong W, Wang H, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic(A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978.
[45] 唐偉. 北運河中異養硝化菌的篩選及其脫氮效能研究[D]. 沈陽:遼寧大學,2019.
Tang Wei. Screening of Heterotrophic Nitrifying Bacteria in the Beiyun River and Study on Its Nitrogen Removal Efficiency[D]. Shengyang: Liaoning University, 2019. (in Chinese with English abctract)
[46] 楊開亮,廖德祥,王瑩,等. 厭氧氨氧化快速啟動及微生物群落演替研究[J]. 水處理技術,2020,46(5):65-70.
Yang Kailiang, Liao Dexiang, Wang Ying, et al. Study on rapid start-up and microbial community succession of anammox[J]. Technology of Water Treatment, 2020, 46(5): 65-70. (in Chinese with English abctract)
Analysis of microbial community in the anaerobic/semi-aerobic spatiotemporal bioreactor for rural wastes
Guo Nanfei1,2,3, Han Zhiyong1,2,3※, Shi Rui1,2,3, Li Hao1,2,3, Liu Jie4
(1(),610059; 2(),610059,; 3,610059,; 4.,,610106,)
Life cycle assessment (LCA) is an important method that can fully evaluate the natural resources consumed in the production process and activities, as well as its impacts on the environment. In recent years, LCA has been widely used in the biodiesel production process. China is enriched in various biodiesel feedstocks, such as soybean oil, colza oil, jatropha, microalgae and waste cooking oil. In the current study, a life cycle assessment methodology was applied to evaluate the energy consumption and emissions of biodiesel products derived from soybean oil and waste cooking oil in the process of a whole life cycle. The results showed that in the whole life cycle, the total energy consumption of soybean-derived biodiesel was about 2.65 times higher than that of biodiesel derived from waste cooking oil. In the life cycle of soybean oil production for biodiesel, the majority energy consumption was contributed by the soybean planting stage, accounting for 62.55% of the total energy consumption. Particularly, the energy consumption of methanol production was rather high, accounting for 25.88% of the total energy consumption. In the life cycle of biodiesel made from cooking waste oil, the main energy consumption was in the production stage of methanol and catalyst, accounting for 81.12% of the total energy consumption. It was followed by the pretreatment stage of gutter oil, consuming 11.25% of the total energy input. In combustion, the CO2, SO2and CO emissions from biodiesels either from soybean oil or waste cooking oil were both lower than those from the conventional diesel. Moreover, compared with the emissions of biodiesel derived from soybean oil, the CO2, SO2, NOx, CO, and dust emissions of biodiesel from the waste cooking oil were reduced by 82.92%, 45.68%, 94.91%, 53.40% and 90.61%, respectively. It infers that the application of biodiesel can significantly reduce the emissions of greenhouse and acid gas. It also confirms that the greenhouse effect can be inevitably slowed down when using the biodiesel on a large scale. According to the environmental impact analysis of biodiesel production and utilization processes in the concept of LCA, the potential value of life cycle for the environmental impact of soybean oil as raw material was 11.70 times that of waste cooking oil, which was 8.42 and 0.72, respectively. Global warming was the predominant environmental impact of the biodiesel from soybean oil. In the case of biodiesel derived from waste cooking oil, the regional acidification was the most significant factor. Compared with soybean oil, the biodiesel made from waste cooking oil can effectively reduce the consumption of energy and the emission of pollutants. In addition, it can realize the efficient reuse of waste resources. The life cycle assessment method was of practical significance to evaluate the biodiesel industry. Nevertheless, it is still challenging to form a unified standard among different processes, because of the complex calculation involved in the LCA process. In the future, it is highly necessary to construct a standard database of Chinese biodiesel industry, further to optimize different processes in the production stage. The findings can provide a sound reference for industrial upgrading and department decision-making, and a specific data support for the sustainable development of agricultural industry.
rural area;microbial community; waste treatment; high-throughput sequencing; spatiotemporally anaerobic/semi-aerobic bioreactor
郭南飛,韓智勇,史瑞,等. 農村垃圾厭氧-準好氧時空聯合生物反應器中微生物群落分析[J]. 農業工程學報,2020,36(19):200-208. doi:10.11975/j.issn.1002-6819.2020.19.023 http://www.tcsae.org
Guo Nanfei, Han Zhiyong, Shi Rui, et al. Analysis of microbial community in the anaerobic/semi-aerobic spatiotemporal bioreactor for rural wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 200-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.023 http://www.tcsae.org
10.11975/j.issn.1002-6819.2020.19.023
X173
A
1002-6819(2020)-19-0200-09
2020-05-20
2020-09-14
四川省杰出青年科技人才項目(2020JDJQ0053);四川省重大科技專項課題(2019YFS0509);中國博士后特別資助基金(2018T110953);地質災害防治與地質環境保護國重實驗室自主課題(SKLGP2019Z009)
郭南飛,主要從事固體廢物處理處置與二次污染防治。Email:824756896@qq.com
韓智勇,博士,教授,主要從事固體廢物資源化與處理處置。Email:hanzhiyong13@cdut.cn