999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE NUCLEARITY OF COMPLETELY 1-SUMMING MAPPING SPACES*

2021-01-07 06:46:22ZheDONG

Zhe DONG (董 浙)

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China E-mail : dongzhe@zju.edu.cn Yafei ZHAO (趙亞菲)

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310012, China E-mail : zhaoyafei zju@163.com

For the ordinary systems of mapping spaces,we can give the following definition:

Definition 1.3An operator spaceVis nuclear(in the system)if there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

As we know,mapping spaces provide a fundamental tool for studying Banach spaces and operator spaces.In this note,we are interested primarily in the nuclearity in the system of completely 1-summing mapping spaces(Π1(·,·),π1).To our surprise,we obtain that C is the unique operator space which is nuclear in the system(Π1(·,·),π1).

2 Nuclearity in(Π1(·,·),π1)

Definition 2.1An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the point-norm topology:

Lemma 2.2An operator spaceVis nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤1.

ProofSuppose thatVis nuclear in the system of(Π1(·,·),π1);it is clear thatVis nuclear.From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1,which approximately commute in the point-norm topology:

Corollary 13.4.2 in[5]implies thatν(ψα??α)≤π1(ψα)·π1(?α)≤1.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤1.Thusπ1(idV)≤ι(idV)≤1.

Conversely,suppose thatVis nuclear andπ1(idV)≤1.By the nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

Theorem 2.4An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if and only ifV=C.

ProofIt is clear,by the definition ofπ1in Section 1,thatπ1(idC)=1.Thus it follows from Definition 2.1 that C is nuclear in the system of(Π1(·,·),π1).

To prove the necessity of this,we suppose thatVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1).From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the pointnorm topology:

It follows from Lemma 2.2 thatπ1(idV)≤1.By Corollary 13.4.2 in[5]we have

ThusidVis completely nuclear.Proposition 12.2.1 in[5]shows thatidVis compact in the Banach space sense,and from classical theory,Vmust be finite dimensional,and soV=V??.By Lemma 2.2 and Theorem 14.6.7 in[5],V=V??is injective.Thus,by Corollary 6.1.8 in[5]we have

Sinceiis a complete isometry andPis a complete quotient mapping,i?is a complete quotient mapping andP?is a complete isometry.Thus it follows from(7.1.27)and Proposition 8.1.5 in[5]that the following embeddings are complete isometries:

3λ-Nuclearity in(Π1(·,·),π1)

Definition 3.1An operator spaceVisλ-nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

It is clear from Definition 2.1 and Definition 3.1 that nuclearity in(Π1(·,·),π1)is equivalent to 1-nuclearity in(Π1(·,·),π1).

Lemma 3.2An operator spaceVisλ-nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤λ.

ProofThe proof is similar to that of Lemma 2.2.Suppose thatVisλ-nuclear in the system of(Π1(·,·),π1);it follows from Definition 3.1 and Definition 1.3 thatVis nuclear and that there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

Thus we haveν(ψα??α)≤π1(ψα??α)≤‖ψα‖cb·π1(?α)≤λ.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤λ.Thusπ1(idV)≤ι(idV)≤λ.

Conversely,suppose thatVis nuclear andπ1(idV)≤λ.By nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

主站蜘蛛池模板: 国产成人精品高清在线| 欧美日韩导航| 67194在线午夜亚洲| 91破解版在线亚洲| 88av在线| 99热这里只有精品在线观看| 99热国产这里只有精品9九| 人妻一区二区三区无码精品一区| 动漫精品啪啪一区二区三区| 无码一区二区波多野结衣播放搜索| 精品久久高清| 四虎永久在线视频| 国产麻豆永久视频| 又猛又黄又爽无遮挡的视频网站| 国产成人精品无码一区二| 一区二区影院| 色噜噜狠狠狠综合曰曰曰| 欧美精品亚洲日韩a| 亚洲成网站| 欧美成人看片一区二区三区 | a毛片在线播放| 亚洲第一黄片大全| 国产欧美日韩综合一区在线播放| 人人澡人人爽欧美一区| 伊在人亚洲香蕉精品播放| 成人国产精品网站在线看| 免费AV在线播放观看18禁强制| 久久精品这里只有精99品| 青青极品在线| 免费看av在线网站网址| 人妻少妇乱子伦精品无码专区毛片| 国产一区三区二区中文在线| 中文字幕乱妇无码AV在线| 欧美中文一区| 亚洲无码高清一区| 无码高潮喷水在线观看| 狠狠色狠狠综合久久| 国产精品亚洲综合久久小说| 欧美不卡视频在线观看| 国产精品视频第一专区| 天天综合网色中文字幕| aⅴ免费在线观看| 97久久免费视频| 久久91精品牛牛| 高清欧美性猛交XXXX黑人猛交| 日韩免费毛片视频| 久久免费视频播放| 亚洲人成在线精品| 国产女人在线视频| 一级毛片免费高清视频| 69av免费视频| 国产在线观看人成激情视频| 日韩中文字幕亚洲无线码| 在线99视频| 不卡无码h在线观看| 亚卅精品无码久久毛片乌克兰 | 国产91丝袜| 中文字幕在线播放不卡| 欧美日韩国产一级| AV老司机AV天堂| 国产呦视频免费视频在线观看| 午夜成人在线视频| 亚洲三级视频在线观看| 国产区91| 国产一区二区三区免费观看| 国产va免费精品观看| 99爱视频精品免视看| 久久久久亚洲精品无码网站| 无码网站免费观看| 免费A级毛片无码免费视频| 亚洲人成成无码网WWW| 1024你懂的国产精品| 国产成人精品男人的天堂下载| 国产91线观看| 自拍欧美亚洲| 国产SUV精品一区二区6| 亚洲成a人在线观看| 国产无码在线调教| 老司机久久99久久精品播放| 亚洲综合精品第一页| 亚洲精品另类| 日韩小视频网站hq|