999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Exact analytical propagators for anisotropic quantum dots under magnetic field with atomic spin-orbital coupling

2021-01-08 00:31:08CHENYinGUOWeiPANXiaoyin
寧波大學學報(理工版) 2021年1期
關鍵詞:浙江

CHEN Yin, GUO Wei, PAN Xiaoyin

Exact analytical propagators for anisotropic quantum dots under magnetic field with atomic spin-orbital coupling

CHEN Yin, GUO Wei, PAN Xiaoyin*

( School of Physical Science and Technology, Ningbo University, Ningbo 315211, China )

In quantum mechanics, there are very few systems whose propagators can be obtained exactly, especially in the case of taking spin-orbital coupling (SOC) effects into account. Using the group theoretical method in phase space, we start with deriving exact analytical expressions for the propagators of anisotropic quantum dots with atomic spin-orbital coupling (ASOC). As an example of application, the evolution of spin-dependent Gaussian wave packets is calculated using the propagator, along with which the corresponding probability densities, the effects of ASOC and magnetic field on the expectations of the distances are also investigated.

path-integral method; spin-orbital coupling; quantum dot; magnetic field

1 Introduction

However, because the presence of asymmetry in the confining potential is experimentally more realistic, there exist lots of works on the anisotropic QDs with the broken rotational symmetry, thereby altered electronic and dynamical properties[3,16-20]. In order to study the magnetic properties of such QDs, the FD model has also been generalized to the elliptical parabolic potential case and been solved exactly[21]. Consequently, various physicalproperties, such as the quantization of the conductance[22]and the electronic properties, can be studied[23]. Moreover, this model also can be used to study rotating droplets of electrons trapped in quasi-two-dimensional quantum dots and rotating Bose-Einstein condensates[24].

Hence, it will be interesting to understand the spin- dependent evolution of wave packets for electrons confined in quantum dots under a perpendicular magnetic field with ASOC. In order to get a better handle on the evolution of the corresponding physical systems, the propagator method[31-32]is regarded as a powerful tool and shall be a good choice. It is well known in quantum mechanics that the propagator as a Green’s function of the Schr?dinger equation contains all the information about the system and plays a central role in Feynman’s path integral approach[31-32]to solve non-relativistic quantum mechanical problems. However, due to the difficulty of obtaining the analytical expressions for the propagators, to our knowledge there are very few such investigations and are solely limited to the isotropic cases[33]. To study the more interesting anisotropic case with broken rotational symmetry, in the present work we derive analytical expressions for the propagator of such systems using the group theoretical method on phase space[34], then the effects of the ASOC and magnetic field on the evolution of the spin-dependent wave packets and the expectations of distances for spin-up and down components are investigated as an example of application.

2 The Hamiltonian

Consider a 2D system of an electron of charge= -,>0 and effective mass*confined in an anisotropic QD, under a perpendicular constant magnetic fieldalong the-direction. Then the Hamiltonian takes the form,

where

where the coefficients are matrices,

3 Calculations of the exact analytical propagator

or in matrix form as

where the matrix

and

These identities shall be useful later on.

Having obtained the solutions for EOM, we can obtain the propagator directly by the group theoretical method on phase space[34],

where the second term on the r. h. s of above equation is defined as

4 The ASOC effects on the evolution of spin-dependent wave packets

As an example of application, next let us consider the evolution of a 2D Gaussian wave packet that has the following form initially at=0,

Inserting the expression for the propagator into above equation, and performing the integral we obtain

where,are functions of (,), i.e.,

Thus, Eq. (28) reduces to

and the spatial density is

Fig. 1 The probability densities for the QD with |Γ|=0.25

In the isotropic cases, the substitution of Eq. (33) into (35) yields the following analytical expression,

Fig. 3 and for the quantum dot at fixed strength of the ASOC |Γ|= 0.25

5 Conclusions

By employing the group theoretical method, we have obtained analytical expressions for the propagators of anisotropic quantum dots with atomic SOC, then as an example of application, the propagator is applied to calculate the evolution of spin-dependent Gaussian wave packets. Consequently, the corresponding probability densities, expectations of the distances are investigated for the anisotropic and isotropic cases. The wave packet splits into two components, one for spin-up and the other for spin-down, and they evolve differently. It is shown that in the isotropic cases, a Gaussian wave packet is always a Gaussian and the cylinder symmetry of the probability densities is kept all the time, and the expectations of the distances are periodic functions of time. While in the anisotropic case, this symmetry of the probability densities is broken and the expectations of the distances become quasi-periodic functions of time. Nevertheless, the strength of the ASOC and the magnetic field in the anisotropic case have similar effects on the averages of the expectations of the distances to those in the isotropic case. But their effects on spin-up component are quite different from those on spin-down one. It must be stressed that this group- theoretical method relies on the solutions to the quite complicated equation of motion of the system, and this may not be achieved for other forms of SOC like Rashba SOC or Dresselhaus SOC. Finally, it is worthy to mention that the propagator we obtained may also be applied to study the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential in the area of Bose-Einstein condensates[36-37].

[1] Chakraborty T. Quantum Dots[M]. Amsterdam: Elsevier, 1999.

[2] Jack L, Harylak P, Wojs A. Quantum Dots[M]. Heidelberg: Springer-Verlag, 2013.

[3] Reimann S M, Manninen M. Electronic structure of quantum dots[J]. Reviews of Modern Physics, 2002, 74(4):1283-1342.

[4] Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots[J]. Reviews of Modern Physics, 2007, 79(4):1217-1265.

[5] Birman J L, Nazmitdinov R G, Yukalov V I. Effects of symmetry breaking infinite quantum systems[J]. Physics Reports, 2013, 526(1):1-91.

[6] Bogachek E N, Landman U. Edge states, Aharonov- Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot[J]. Physical Review B, 1995, 52:14067-14077.

[7] Hornberger K, Smilansky U. Magnetic edge states[J]. Physics Reports, 2002, 367(4):249-385.

[8] Matulis A, Pyragien? T. Magnetic edge states of an impenetrable stripe[J]. Physical Review B, 2003, 67(4): 045318.

[9] Harrison P, Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures[M]. Hoboken, NJ: John Wiley & Sons, Inc, 2016.

[10] Viefers S, Koskinen P, Singha Deo P, et al. Quantum rings for beginners: energy spectra and persistent currents[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 21(1):1-35.

[11] Fock V. Bemerkung zur quantelung des harmonischen oszillators im magnetfeld[J]. Zeitschrift fur Physik, 1928, 47(5/6):446-448.

[12] Darwin C G. The diamagnetism of the free electron[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1931, 27(1):86-90.

[13] MacDonald A H. Quantum Hall Effect: A Perspective[M]. Dordrecht: Springer Netherlands, 1989.

[14] Chakraborty T, Pietil?inen P. The Fractional Quantum Hall Effect[M]. Heidelberg: Springer, 1988.

[15] Prange R E, Girvin S M. The Quantum Hall Effect[M]. New York: Springer-Verlag, 1990.

[16] Tarucha S, Austing D G, Sasaki S, et al. Effects of Coulomb interactions on spin states in vertical semiconductor quantum dots[J]. Applied Physics A: Materials Science & Processing, 2000, 71(4):367-378.

[17] Maksym P. Quantum states of interacting electrons in a 2D elliptical quantum dot[J]. Physica B: Condensed Matter, 1998, 249/250/251:233-237.

[18] Ezaki T, Mori N, Hamaguchi C. Electronic structures in circular, elliptic, and triangular quantum dots[J]. Physical Review B, 1997, 56(11):6428-6431.

[19] Fujito M, Natori A, Yasunaga H. Many-electron ground states in anisotropic parabolic quantum dots[J]. Physical Review B, 1996, 53(15):9952-9958.

[20] Hirose K, Wingreen N S. Spin-density-functional theory of circular and elliptical quantum dots[J]. Physical Review B, 1999, 59:4604-4607.

[21] Schuh B. Algebraic solution of a non-trivial oscillator problem[J]. Journal of Physics A: Mathematical and General, 1985, 18:803-807.

[22] Madhav A V, Chakraborty T. Electronic properties of anisotropic quantum dots in a magnetic field[J]. Physical Review B, 1994, 49:8163-8168.

[23] Geyler V A, Margulis V A. Quantization of the conductance of a three-dimensional quantum wire in the presence of a magnetic field[J]. Physical Review B, 2000, 61:1716-1719.

[24] Saarikoski H, Reimann S M, Harju A, et al. Vortices in quantum droplets: Analogies between boson and fermion systems[J]. Reviews of Modern Physics, 2010, 82:2785- 2834.

[25] Bandyopadhyay S. Introduction to Spintronics[M]. Boca Rota, FL: CRC Press, 2008.

[26] Rashba E I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop[J]. Soviet physics - Solid state, 1960, 2:1109- 1131.

[27] Bychkov Y A, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of Physics C: Solid State Physics, 1984, 17:6039-6045.

[28] Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin Hall effect in semiconductors[J]. Science, 2004, 306(5703):1910-1913.

[29] Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect[J]. Physical Review Letters, 2004, 92:126603.

[30] Dresselhaus G. Spin-orbit coupling effects in zinc-blende structures[J]. Physical Review, 1955, 100:580-586.

[31] Feynman R P. Space-time approach to non-relativistic quantum mechanics[J]. Reviews of Modern Physics, 1948, 20:367-387.

[32] Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals[M]. New York: McGraw-Hill, 1965.

[33] Hsu B C,van Huele J F S. Analytic propagators for spin-orbit interactions[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42:475304.

[34] Howard S D, Roy S K. Group theoretical techniques on phase space and the calculation of quantum mechanical propagators[J]. Journal of Physics A: Mathematical and General, 1989, 22:4865-4876.

[35] Bernevig B A, Zhang S C. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96:106802.

[36] Wen L H, Liu M, Xiong H W, et al. Interference of Bose-Einstein condensates and entangled single-atom state in a spin-dependent optical lattice[J]. The European Physical Journal D, 2005, 36(1):89-94.

[37] Wen L H, Liu M, Kong L B, et al. Evolution of spin-dependent atomic wave packets in a harmonic potential[J]. Chinese Physics, 2005, 14(4):690-696.

磁場下有原子自旋軌道耦合的各向異性量子點的精確解析傳播子

陳 寅, 郭 偉, 潘孝胤*

(寧波大學 物理科學與技術學院, 浙江 寧波 315211)

量子力學中很少有系統能夠精確地計算傳播子, 特別是在考慮了自旋軌道耦合效應的情況下. 利用相空間的群論方法, 首先導出了有原子自旋軌道耦合的各向異性量子點傳播子的精確解析表達式. 隨后利用傳播子來計算自旋高斯波包的演化與相應的概率密度, 并研究了原子自旋軌道耦合效應和磁場強度對距離期望值的影響.

路徑積分方法; 自旋軌道耦合; 量子點; 磁場

2020?08?01.

寧波大學學報(理工版)網址: http://journallg.nbu.edu.cn/

國家自然科學基金(11375090).

陳寅(1990-), 男, 浙江寧海人, 在讀碩士研究生, 主要研究方向: 量子器件相關理論計算. E-mail: 15336698809@163.com

潘孝胤(1974-), 男, 浙江寧海人, 研究員, 主要研究方向: 凝聚態理論. E-mail: panxiaoyin@nbu.edu.cn

O413.1

A

1001-5132(2021)01-0055-10

(責任編輯 韓 超)

猜你喜歡
浙江
Mother
掃一掃閱覽浙江“助企八條”
浙江嘉興卷
學生天地(2019年30期)2019-08-25 08:53:22
Dave Granlund's Cartoons
“雙下沉、兩提升”浙江醫改提升群眾獲得感
浙江“最多跑一次”倒逼“放管服”
幽默臺歷
喜劇世界(2017年5期)2017-03-29 01:52:25
浙江“雙下沉、兩提升”之路
中國衛生(2016年7期)2016-11-13 01:06:44
浙江老年報:養安享杭州又增新點
杭州(2015年9期)2015-12-21 02:51:52
浙江醫改三部曲
中國衛生(2014年10期)2014-11-12 13:10:10
主站蜘蛛池模板: h网址在线观看| 国产人妖视频一区在线观看| 天天综合网色| 欧美成一级| 国产午夜看片| 99中文字幕亚洲一区二区| 99人妻碰碰碰久久久久禁片| 亚洲精品午夜无码电影网| 日韩国产精品无码一区二区三区| 在线视频97| 欧美天堂在线| 国产在线91在线电影| 欧美日韩在线成人| 国产二级毛片| 久久综合亚洲色一区二区三区| 九九久久99精品| 欧美视频在线观看第一页| 朝桐光一区二区| 99久久精品久久久久久婷婷| 色悠久久久| 国产亚卅精品无码| 一本大道视频精品人妻| 亚洲欧美自拍中文| 国产精品v欧美| 精品人妻无码区在线视频| 99re热精品视频国产免费| 国产麻豆va精品视频| 精品国产自在在线在线观看| www.99在线观看| 91精品亚洲| 亚洲成人动漫在线| 国产毛片基地| 亚洲第一成年免费网站| 日韩大片免费观看视频播放| 成人精品午夜福利在线播放| 午夜人性色福利无码视频在线观看| 性网站在线观看| 亚洲精品中文字幕无乱码| 成人在线不卡视频| 免费一级成人毛片| 91免费观看视频| 青青草原国产| 欧美在线精品怡红院| 97在线碰| 综合色区亚洲熟妇在线| 久久久黄色片| 青草国产在线视频| 99手机在线视频| 久久福利网| 成人欧美在线观看| 黄片一区二区三区| 欧美爱爱网| 99久久精品免费看国产电影| 久久久久青草线综合超碰| 欧美国产视频| 看国产毛片| 色综合天天综合中文网| 中文字幕无码中文字幕有码在线| 成人在线观看一区| 久久公开视频| 麻豆国产精品视频| 亚洲毛片在线看| 97久久精品人人做人人爽| 久久情精品国产品免费| 伊人久久婷婷五月综合97色| 亚洲综合色区在线播放2019| 亚洲毛片一级带毛片基地| 亚洲精品老司机| 国产成人福利在线| 亚洲无码视频喷水| 色亚洲成人| 26uuu国产精品视频| 国产精品亚欧美一区二区三区| 特黄日韩免费一区二区三区| 亚洲日韩高清在线亚洲专区| 久久综合成人| 国产香蕉97碰碰视频VA碰碰看| 大香伊人久久| 制服丝袜在线视频香蕉| 亚洲AV无码一二区三区在线播放| 一区二区三区四区日韩| 欧美一道本|