王保明 顏士華 譚曉風


摘 要:乙酰輔酶A羧化酶(Acetyl-CoA carboxylase,ACCase)是催化脂肪酸合成的關鍵和限速步驟。該文介紹了ACCase的分類及結構特征,闡述了其在脂肪合成代謝中的作用和在除草劑中的應用,分析了它的表達調控及反饋機理,揭示了ACCase基因的克隆及表達鑒定,并展望了ACCase在植物育種中的應用前景。
關鍵詞:植物;ACCase;基因;結構功能;表達調控
中圖分類號 S364.3 文獻標識碼 A 文章編號 1007-7731(2021)01-0017-08
Study of the Structural Function and Expressing Regulation of ACCase Genes
WANG Baoming1,2,3 et al.
(1College of Agriculture & forestry Science and Technology, Hunan Applied Technology University, Changde? 415000, China; 2College of Modern Agriculture, Linyi University of Science and Technology, Linyi? 276000,China; 3“2011”Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province (Central South University of Forestry and Technology),Changsha 410004, China)
Abstract: ACCase is the critical step and rate limiting step in fat synthesis. In this paper, its classification and structural features were introduced, and its roles in lipid metabolism and application in herbicides were elaborated. Moreover, its mechanism of expressing regulation and feedback were also analyzed, and the cloning and expression patterns of ACCase genes were revealed. Finally, its application and prospect in plant breeding were prospected.
Key words: Plant; ACCase; Gene; Structural function; Expressing regulation
1 乙酰輔酶A羧化酶的結構、分類和功能
乙酰輔酶A(Acetyl coenzyme A,Acetyl-CoA)是碳進入油脂合成代謝途徑的關鍵底物,而乙酰輔酶A羧化酶(Acetyl-CoA carboxylase,ACCase)能夠催化Acetyl-CoA轉化為丙二酰輔酶A(Malonyl CoA)而進入脂肪酸合成和油脂代謝途徑。ACCase屬于生物素Ⅰ酶,Malonyl CoA是脂肪酸合成和脂酰鏈延伸系統(tǒng)代謝的底物[1-2]。它在脂肪酸合成中作為C2單位供體,作為線粒體穿梭系統(tǒng)的調節(jié)因子,是脂肪酸氧化中一個代謝底物和蛋白活性的調控代謝物[3-5]。ACCase的催化反應不僅是關鍵步驟,也是限速步驟[4,6]。生物體內的ACCase包括異質型和同質型,其中,同質型ACCase含有生物素羧化酶(biotin carboxylase,BC)、生物素羧基載體蛋白(biotin carboxylase carrier protein,BCCP)和羧基轉移酶(carboxyl transferase,CT)3個功能域[7]。異質型ACCase是植物從頭合成脂肪酸的限速酶和關鍵酶,由BC、BCCP、α-CT和β-CT4個亞基組成[6,8-9]。其中,BC、BCCP和α-CT為核基因accC、accB以及accA編碼,β-CT為質體基因accD編碼。BC是糖異生、脂肪合成、氨基酸代謝和能量轉換的關鍵酶。生物素共因子從碳酸鹽捕獲CO2,催化轉運羧酸鹽形成細胞代謝產物,它以共價鍵連接在BC亞基上,在ACCase羧化Acetyl-CoA的過程中作為羧基的中間載體,BC和CT各催化2個獨立的半反應[9-17]:
第1個半反應:
E-biotin(BCCP)+[HCO-3]+Mg2+-ATP[]E-biotin-[CO-2]+Mg2+-ADP + Pi:biotin carboxylase;
第2個半反應:
E-biotin-CO2-(BCCP-CO2)+acetyl-CoA[]E-biotin(BCCP)+malonyl-CoA: carboxyltransferase。
BCCP作為活化羧基供體,在BC和CT之間擺動以傳遞羧基。其中,BC催化生物素羧化反應,含有ATP、Mg2+ 和CO2的結合點以及生物素輔基(共價鍵結合的生物素分子)和82個殘基(包括Lys殘基),在乙酰COA羧化反應中扮演中心角色。BCCP在BC催化下,CO2結合到生物素分子或羧基生物素;而它在CT的催化下,轉移到乙酰CoA上成為Malonyl CoA。
1.1 植物中ACCase的結構和分布 同質型ACCase即ACCase Ⅰ,也稱多功能或真核型ACCase,分子量為220~280kDa,主要存在于酵母[18-19]、藻類[20]、動物[21-22]以及植物胞質溶膠中[23-25]。其基因序列與異質型ACCase的BC、BCCP、β-CT和α-CT組分相對應,形成多肽鏈上的3個功能域,活性狀態(tài)下以同型二聚體形式出現,結構穩(wěn)定難以解離。其結構形式為NH2-BC-BCCP-CT-COOH(見圖2)[9]。1972年,研究者在菠菜葉綠體中發(fā)現了類似于大腸桿菌ACCase酶,直到1993年,才從豌豆的葉綠體中鑒定異質型ACCase[9,26]。異質型ACCase,又名原核類型ACCase,是BC、BCCP、α-CT和β-CT 4個亞基復合體。非活性條件下,這些亞基以單體形式存在;活性條件下,前2個亞基呈現同型二聚體,后2個是異型二聚體,兩者以共價鍵相連構成CT催化域[27]。這類ACCase多存在于細菌、雙子葉植物、禾本科單子葉植物的質體中[7,13]。異質型ACCase不穩(wěn)定,易解離,它是由BC亞基同聚體與BCCP同聚體裝配在一起,然后與α-CT和β-CT的異聚體松散連接[7,28]。其分子形式目前還不清楚,可能類似于細菌ACCase的(BCCP)4(BC)2(α-CT)2(β-CT)2 (見圖2)[9,29]。
ACCase分布與植物器官、生長狀態(tài)有關,小麥質體ACCase在中間部位較高,在根、葉片較低;而胞質溶膠ACCase在鞘科植物內含量較高[30]。在禾本科單子葉植物質體中,同質型ACCase與胞質溶膠中的不同。例如,小麥質體和胞質溶膠的同質型ACCase氨基酸序列同源性僅為67%,而其與玉米質體ACCase的同源性更高[31-32]。雖然玉米和小麥都是單子葉植物,但小麥胞質溶膠ACCase與雙子葉植物胞質溶膠ACCase的同源性比與玉米質體ACCase的同源性高;油菜葉綠體中也存在同質型和異質型2種ACCase,即ACCase I 220kDa(存在于雙子葉植物)和類似于大腸桿菌和擬南芥的多亞基異質型ACCase II復合體[33-34];其中ACCase II復合體中BCCP在氨基酸水平上與擬南芥有61%的一致性和79%的相似性[34]。
1.2 其他生物ACCase的結構、分布及特點 黏液球菌(Myxococcus xanthus)處于原核向真核生物演化期,其ACCase基因含有538氨基酸(aa)(ACCA)和573aa(ACCB)2個開放閱讀框架(ORF),分別編碼58.1kDa和61.5kDa2個BC亞基,前者與乙酰輔酶A羧化酶、丙酰輔酶A羧化酶以及丙酮酸羧化酶的BC亞基相似,含有ATP結合、固定CO2以及生物素結合模塊。后者位于前者上游,與乙酰輔酶A羧化酶、丙酰輔酶A羧化酶、丙酮酸羧化酶的轉羧酶和甲基丙二酰輔酶A脫羧酶高度相似,含有保守的羥基生物素結合位域和酰基輔酶結合域的CT亞基。它們形成1個兩基因的操縱子[35]。在動物體內包括α和β 2種ACCase,其中,α-ACCase由ACACA基因編碼,主要在肝臟、脂肪組織和乳腺中表達[4]。酵母、小鼠、雞、人的α-ACCase的氨基酸序列約有90%相似性[36-37]。在轉錄過程中PⅠ、PⅡ啟動子作用于α-ACCase基因[38]。β-ACCase由ACACB編碼,在骨骼肌和心臟中表達,在肝臟和HepG2細胞中也有表達,有PⅠ、PⅡ2個啟動子,它們的轉錄作用不同。人體中β-ACCase mRNA具有不同5′端的非翻譯區(qū)[4]。人和大鼠的ACCase有2種同工酶,一個為265kDa,位于17號染色體上;另一個為275~280kDa,位于12號染色體的長臂上。在哺乳動物和人類中ACCase是一個多基因家族[37,39]。
1.3 ACCase的功能
1.3.1 在脂肪合成途徑中的作用 脂肪酸合成起始于ACCase催化乙酰輔酶A產生Malonyl CoA,Malonyl CoA是脂肪酸合成的重要調控因素,它通過提高ACCase活性促進脂肪酸合成[40-41]。不同ACCase在脂肪酸合成中的作用不同。由異質型ACCase催化產生的Malonyl CoA用于脂肪酸從頭生物合成,而由同質型ACCase催化產生的用于脂肪酸鏈延伸及類黃酮次生代謝產物合成。從頭合成脂肪酸主要發(fā)生在質體,脂肪酸經過質膜在胞質溶膠和質體發(fā)揮作用[9]。動物體內α-ACCase在長鏈脂肪酸合成中催化限速反應并調節(jié)脂肪酸合成。在脂肪生成活躍組織中,Malonyl CoA的主要功能是作為長鏈脂肪酸從頭合成碳鏈延長的C2供體從而合成三酰甘油和磷脂,并代替不同的脂肪乙酰輔酶A延長酶[42]。α-ACCase對胚胎早期發(fā)育具有重要作用[36]。β-ACCase主要調節(jié)脂肪酸氧化,其催化產物抑制脂肪酸氧化[43]。
1.3.2 反饋調節(jié)作用 擬南芥同質型ACCase基因在油菜質粒中過量表達,這種過量表達抑制了其他脂肪酸合成基因的表達而增加Malonyl CoA在前體中的積累[44]。14C標記的酰-酰載體蛋白加入外源脂肪酸后,在反饋抑制過程中酰-酰載體蛋白變化抑制Malonyl CoA的功能而導致脂肪酸合成降低。這暗示ACCase在脂肪酸合成的反饋調節(jié)中處于樞紐地位,是脂肪酸合成反饋調節(jié)的作用位點[45]。
1.3.3 在化學除草劑中的應用 ACCase是化學除草劑的重要靶標,其抑制劑是以ACCase為作用靶標的除草劑,能夠抑制禾本科植物體內的脂肪酸合成。這類除草劑通過抑制真核型ACCase生成Malonyl CoA的羧化反應,進而抑制植物脂肪酸合成,有選擇性地防除禾本科雜草[46-48]。例如,在菵草(Beckmannia syzigachne)中Trp1999Leu突變后對不同ACCase抑制除草劑的抗性產生差異,以此為依據選擇合適的化學除草劑達到有效防治雜草的目的[49]。
2 ACCase的表達調控機理
由于異質型ACCase的BC、BCCP和α-CT在氨基端含有轉移肽,它們的前體蛋白輸送至葉綠體剪除轉移肽后,組裝成復合體才具有ACCase的催化活性[50]。植物器官中ACCase活性由復雜的機制調控,其基因表達調控主要包括轉錄調節(jié)、mRNA編輯和轉錄后調控[51]。
2.1 轉錄調節(jié) 轉錄調控主要通過發(fā)育誘導異質型ACCase的量與性質實現,細胞中脂肪酸合成達到活躍狀態(tài)時或在之前,編碼BC、BCCP、α-CT和β-CT的mRNA累積達到最大,隨著脂肪酸合成減少,mRNA積累下降。mRNA最高積累發(fā)生在細胞快速分裂、生長和大量油脂積累中,與細胞生長有直接關系,并控制ACCase表達[51-52]。accA、accB、accC與質體中的accD互通信息并相互影響[52]。目前這3種核基因與質體基因的協調機制、增強子、轉移因子還不清楚。質體在RNA轉錄至少包括質體編碼聚合酶(Plastid-encoded polymerase,PEP)和核編碼聚合酶(nucleus-encoded polymerase,NEP)2種聚合酶。PEP屬于多亞基細菌型酶,含有大腸桿菌σ7啟動子35(TTGaca)/–10(TAtaaT)元件;NEP含有T3/T7以及線粒體酶,多數NEP啟動子由類似于植物線粒體的核心序列YRTA(type-Ia)控制,其中一些NEP啟動子在YRTA模塊上游含有GAA-box模塊(type-Ib)。在質體中,光合基因具有PEP啟動子(I類),非光合作用基因具有RNA聚合酶(II類),少數基因只由NEP轉錄(III類)[53-55]。PEP主要作用于葉綠體,在其周圍含有大量的調控蛋白。如,在煙草質體基因組中,accD與psaI、ycf4、cemA、petA形成操縱子,在NEP型啟動子控制下以多順反子形式轉錄[56-59]。accD的表達決定因子是其5′UTR長度,5′UTR長度可能是NEP在質粒中轉錄效率的貢獻因子[60]。
2.2 RNA編輯 葉綠體中RNA編輯對ACCD以及ACCase活性具有重要作用[61]。編輯后的酶具有活力,未編輯的則無活力。RNA編輯產生啟始和終止密碼,并改變編碼序列。通常的變化是在三聯體的第2個核苷酸位置上胞嘧啶(UCG)轉變?yōu)槟蜞奏ぃ║UG)[62]。一些植物的accD在相應位點沒有亮氨酸密碼子,而編輯后產生了亮氨酸密碼子[61]。
2.3 轉錄后調節(jié) ACCase亞基合成受轉錄后調控[53]。如,在煙草中以質體rRNA操縱子替代accD的操縱子,ACCase亞基的表達量和酶量增加[63],但是除了accD,其他基因的轉錄量均未增加。在野生型質體中,由于缺少accD亞基表達,其他3個亞基可能迅速降解,而在大量表達accD的植株中,這些過量表達能夠裝配進入ACCase[9]。ACCase表達量受基因轉錄控制,在裝配中受蛋白質降解控制[8]。BC或BCCP同工酶2正向和反向表達都未改變ACCase亞基積累,這表明ACCase各亞基沒有協調表達[9,53,64]。
3 ACCase的基因克隆及表達研究
3.1 ACCase的基因克隆
3.1.1 同質型ACCase基因的克隆 目前,已經從油菜[25]、苜蓿、小麥[32]、野生燕麥、黑麥草、擬南芥[65]和玉米中獲得同質型ACCase基因的全長序列,它們長度均在10Kb以上,ORF為6700~7000bp,含有大量內含子。其中,油菜同質型ACCase至少由5個家族基因編碼。硅藻基因組中含有2個ORF,較大的ORF長4.1Kb,位于較小ORF(2.2kb)的下游,中間含有73bp的內含子[66]。植物同質型ACCase的肽鏈上依次排列著BC、BCCP、α-CT功能域,它們由單一核基因編碼。一些植物的種內外ACCase同源性存在差異。小麥質體ACCase的氨基酸序列與胞質ACCase的氨基酸序列同源性為67%,而它與玉米質體的高達80%[31]。植物ACCase最保守區(qū)域位于BC和BCCP中生物素羧化位點和生物素酰化位點周圍。其中,生物素結合位點保守序列E(V/A)MK(M/L)為所有植物ACCase所共有[33]。在谷子中,2個編碼2321個氨基酸ACCase cDNAs的亮氨酸/異亮氨酸位點可能是APPs和CHDs2類除草劑作用的關鍵位點[3]。1.8Kb長的BC功能域是ACCase最保守區(qū)域,也是生物素羧化位點、ATP結合位點[67]。
3.1.2 異質型ACCase亞基基因的克隆及結構分析 截至目前,已經克隆了大腸桿菌[12]、酵母菌[18]、豌豆[26]、小麥[30]、擬南芥[65]、煙草、馬鈴薯[68]、玉米[69]等生物,以及大豆[50]、油菜[33,70-71]、花生[72]、棉花[73]、蓖麻、棕櫚[74]、麻瘋樹[75]等油料植物的異質型ACCase亞基基因。其中,大腸桿菌、擬南芥、大豆、花生和油菜[71]的已全部克隆,并且獲得了BCCP和BC的晶狀結構。大腸桿菌的BCCP和BC亞基基因共轉錄,其序列與老鼠丙酰輔酶羧化酶α-CT高度相似。生物素羧化酶活性和生物素(酰)化區(qū)域位于α-CT,而β-CT與老鼠丙酰輔酶羧化酶β-CT高度相似,并含有鋅指模塊CX2CX13-15CX2C催化羧基轉移酶反應[8]。CT含有乙酰輔酶A結合域,其保守區(qū)域可能是CoA結合位點[10,13],在植物異質型ACCase中,葉綠體編碼基因accD與大腸桿菌的同源,在禾本科植物中,accD基因或被截短,僅存一個短的C端區(qū)域,如水稻,或完全缺失,如小麥。其他核編碼基因在胞質溶膠中轉錄翻譯成前體蛋白,然后被轉運到葉綠體中除去轉移肽,與葉綠體中的β-CT加工組裝成高分子量ACCase復合體[41,66]。
以探針篩選cDNA文庫從酵母菌獲得6個β-CT亞基,其中2個為全長cDNA[18]。擬南芥基因組異質型ACCase有2個基因編碼的BCCP亞基,分別有1個基因編碼BC、α-CT、β-CT亞基。馬鈴薯accD 5′末端包括典型的原核生物啟動子類-35和-10序列TTGACA和TATCAA,ORF中包括乙酰輔酶A和羧基生物素結合位點、羧基轉移酶催化位點[68]。在Brassica napus、Bassica rapa和Bassica oleracea中含有8個α-CT基因,這些基因含有9個外顯子,其中,7個長度幾乎相同,差異僅在第1個和最后1個外顯子,最大差異出現在第2個內含子[70]。通過構建cDNA文庫、EST測序、5′-RACE和3′-RACE分離出花生異質型ACCase accB1、accB2、accC、accA、accD和同質型ACCase基因。accD基因存在兩處核苷酸編輯位點,初級結構高度保守[71]。油棕櫚accD的氨基酸序列與其他植物的在N端差別大,含有CX2CX15CX2C鋅指結構和(G/A)SMG(S/C)(V/A)VG、(V/L)(I/L)(I/M/L)V(C/S)(A/S)SGGARMQE、QM(A/G)KI(S/A)(S/A)(A/V)(L/S)、PT(T/A)GGVTAS(F/L)(G/A)(M/T)LGDIII(A/T)EP、FAGKR(V/I)IE(Q/E)(T/L)L5個保守模塊[73]。
通過構建麻瘋樹cDNA文庫和BAC文庫,獲得了α-CT、BCCP、BC、β-CT基因,它們的基因序列與其他植物的一致性較高。其中,α-CT、BCCP、BC是單拷貝核基因[75]。運用RT-PCR、RACE、基因組步移克隆出油菜ACCase的α-CT全長cDNA[73]。以簡并引物獲得序列為探針,從地中海擬無枝菌酸菌U32中獲得的ORF為1797bp的accA基因[77]。從中棉35中克隆了5個編碼異質型ACCase基因,其中,1個編碼BC,1個編碼BCCP,1個編碼β-CT,2個編碼α-CT,每個基因都是多拷貝[71]。從花生野生近緣種中克隆出accB1和accB2,它們的基因序列高度保守[78]。在陸地棉花中克隆出GhBCCP1、GhBC1、GhCTα2、GhCTβ,它們分別含有7、16、10、1個外顯子[79]。在結構方面,異質型ACCase accA和accB的翻譯產物在N端富含羥基化氨基酸Ser和Thr,疏水氨基酸Ala和Val,極性氨基酸Arg和Lys。這是轉運肽的特點,在N端含有特征序列Met-Ala[33]。植物ACCase最保守區(qū)域是生物素羧化位點和生物素酰化位點周圍,分別位于BC和BCCP,AMKLMN是保守的生物素位點,其中E(V/A)MK(M/L)是所有植物ACCase共有[33]。生物素(酰)化模塊(C/G/M)-I-(V/I/L)-G-A-M-K-(M/L)-(M/E)-(N/I)在所有BCCP中高度保守[50]。如,擬南芥AtBCCP2和AtBCCP1的cDNA碳端生物素(酰)化模塊(biotinylation)217EAMKLMNEIE226周圍序列高度相似[9]。另外,BCCP中部區(qū)域的一個關鍵特征是高脯氨酸含量[50]。在accD 5端上游rbcL-accD基因間隔的核苷酸序列存在位點變化[80]。在桑科5屬10個物種的rbcL-accD基因間隔發(fā)現了220處變化位點和16處插入或刪除位點,但桑屬rbcL-accD的序列卻高度保守[81]。此外,利用數量位點(quantitative trait loci,QTL)研究發(fā)現:ACCase基因與控制脂肪酸和油脂QTL位點連鎖影響玉米、燕麥種子中脂肪酸和油量變化[82-84]。在油桐中ACCase活性與種仁含油率具有正相關性[85]。
3.1.3 cDNA文庫、轉錄組和基因組測序的應用 利用構建的油茶cDNA文庫,克隆鑒定了油茶ACCase的accA、accB、accC和accD基因,分析它們的結構特點和表達模式[86-87]。利用油桐轉錄組克隆了ACCase亞基基因的cDNA序列[88]。利用基因組測序在Gossypium raimondii、G.arboreum、G.hirsutum、G.barbadense Gossypium中鑒定了4~8種ACCase BCCP基因的同源物[89]?;诶酌傻率厦蕖喼廾薅扼w、陸地棉、海島棉四倍體的基因組測序鑒定出棉花異質型ACCase核基因組編碼的基因家族:24個BCCP基因、12個BC基因、11個α-CT基因,從而大大提高了ACCase基因的克隆效率[90]。
3.2 ACCase基因的表達及表達模式研究
3.2.1 表達研究 基因表達是在酶和調控序列的作用下基因轉錄成mRNA,經加工在核糖體協助下翻譯出相應蛋白,在受體細胞經修飾而發(fā)揮特定生物學功能。表達產物主要包括RNA(tRNA、mRNA、rRNA、MicroRNA)、蛋白質、多肽等?;虮磉_產物可以揭示出基因表達生物學活性和生物學功能。通過構建共表達載體pHisAD,在大腸桿菌中表達豌豆質體CT,獲得α-CT和β-CT多聚體的激活酶。該重組酶與來自豌豆葉綠體的大小相似,其催化活性與天然豌豆質體的相似[91]。將大豆異質型ACCase BC、BCCP、α-CT亞基基因cDNAs的轉錄產物輸入到葉綠體中成為完整的ACCase,在大腸桿菌中產生特定抗體,利用抗體形成800kDa的BC/BCCP和600kDa的α-CT/β-CT復合體。將2個復合體一定比率混合,可以恢復ACCase活性,當把大豆(BC/BCCP)與豌豆(α-CT/β-CT)的復合體混合,可產生較高的ACCase活性[50]。ACCase BCCP和β-CT的mRNA和蛋白質表達分析暗示發(fā)育葉片和種子是脂肪酸高效合成器官[33]。Arabidopsis中的AtBCCP1和AtBCCP2異構體,其中,前者在葉、根、花、長角果表達,而后者主要在花、種子等生殖器官中大量表達?;ê烷L角果中的mRNA積累反映了在授粉和貯存積累油脂的需要。前者可能為看家基因,出現在所有器官,后者主要表現在生殖器官[28]。馬鈴薯accD在葉片、莖、根、塊莖的轉錄表達,表明它是一個看家基因[68]。異質型ACCase是所有組織中的關鍵蛋白。但是在花后40d種子中的轉錄比在花、真葉、纖維中轉錄水平要低,可能是因為這個時期脂肪酸合成速度降低的緣故[72-73]。
3.2.3 表達模式研究 基因表達具有時間特異性和空間特異性,前者多與細胞或個體的特定分化、發(fā)育階段相適應,為階段特異性;后者由細胞在組織器官的分布差異決定,為細胞特異性或組織特異性。在花生中,異質型ACCase和同質型ACCse基因在所有組織表達,它們的RNA表達差別很大。種子發(fā)育中accC、accA、accD的mRNA在花后60d大量表達,其中accC和accA表達模式相似,在葉片和種子大量表達,而accD在葉片中的表達比其他組織中多;同質型ACCase在莖和花中表達較多。accB2在花后50~70d大量表達,種子中表達量最多,而accB1在花后80d以前表達量變化較大,在葉片中表達多[73]。半定量和實時定量PCR發(fā)現油棕櫚accD和accC協調表達,它的表達對異質型ACCase水平、種子油產量至關重要[74]。在麻瘋樹葉片中accD的表達比其他3個基因約高6倍,這可能是葉片富含葉綠體的緣故。在受粉后42d胚中的表達最大,暗示油脂合成達到高峰[75]。番茄果實顏色由綠色、變色、淺紅、成熟紅變化,轉錄和翻譯中accD基因轉錄豐度增加,成熟達到最大,暗示在果實成熟中大量需求油脂,并貯存基質滿足果實成熟大量合成類胡蘿卜素的需求[92]。陸地棉花的中GhBCCP1、GhBC1、GhCTα2、GhCTβ在各組織中表達,與油脂積累具有正相關性并增加油含量[79]。
4 ACCase在植物育種中的應用及前景
植物油脂合成主要受質體ACCase控制。通過農桿菌轉化系統(tǒng)過量表達同質型ACCase和葉綠體轉化系統(tǒng)過量表達異質型ACCase,實現了數量調控脂肪酸的合成。在細菌(Escherichia coil)中通過提高乙酰輔酶A羧化酶活性促進脂肪酸合成[41]。通過構建細菌多順反子,使脂肪酸含量大幅增加[41,93]。在大腸桿菌中過量表達ACCase,不但大幅地提高了丙二酰輔酶A的表達量,而且顯示出協同效應,增加乙酰輔酶A的利用性,有助于脂肪酸合成[94]。
4.1 同質型ACCase的應用 同質型ACCase主要位于胞質溶膠,是一個大于200kDa的二聚體,催化產生的丙二酰CoA用于超長脂肪酸延伸。將油菜種子貯藏蛋白特異表達啟動子與擬南芥同質型ACCase基因ACC1融合,在大豆Rubisco SSU轉移肽作用下,定向將胞質溶膠ACCase導入于油菜葉綠體,大幅度提高了成熟種子的ACCase活性,并增加了種子含油量并改變了脂肪酸組成。將同質ACCase定位質體,既保護免于細胞質蛋白質代謝影響,也不受控制質體活性的調節(jié)抑制,這是轉基因植物產油率高的原因[44,95]。將ACCase定位于淀粉體并過量表達,不但增加脂肪酸合成,而且大幅增加了三?;视秃縖95]。相反,反義表達抑制油菜同質型ACCase活性顯著降低成熟種子的含油量[96]??梢?,同質型ACCase的遺傳操作是一個合理的應用策略。
4.2 異質型ACCase的應用 質體中NEP和PEP參與轉錄,通過同源重組轉化煙草質體,在煙草中以NEP和PEP啟動子替代accD的啟動子,能夠提高脂肪酸含量,延長葉片壽命,提高種子產量[56]。這項技術已經成功地應用到油料植物中[63,98]。反之,減少ACCase亞基因的表達會影響植物的生長和發(fā)育。同源重組剔除煙草部分accD基因及上游DNA序列,會導致煙草植株葉片出現白綠色斑點或葉片數目減少[99]。利用特異啟動子過量表達ACCase亞基基因能夠增加種子油含量[79]。然而,在煙草中組成型啟動子正向和反向表達煙草的BC亞基,BC的表達變化沒有影響B(tài)CCP表達。又如,分別構建組成啟動子與BCCP2反義表達、napin種子啟動子與BCCP2基因正義表達載體,在反義表達擬南芥植株中的轉錄量表達增加,但沒有明顯的表型變化;在正義表達的擬南芥發(fā)育種子中雖然BCCP2表達量增加,但是子代種子的脂肪酸含量反而比野生擬南芥種子要低很多。這暗示BC和BCCP亞基不是ACCase積累的限制因子[100]??傊?,由于這些調控、抑制、反饋作用使得ACCase的轉基因應用是一個十分復雜的過程。
參考文獻
[1]Konishi T,Shinohara K,Yamada K,et al.Acetyl-coA carboxylase in higher plants:most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme[J].Plant Cell Physiol.,1996,37:117-122.
[2]任波,李毅.大豆種子脂肪酸合成代謝研究進展[J].分子植物育種,2005,3(3):301-306.
[3]趙虎基,王國英.植物乙酰輔酶A羧化酶的分子生物學與基因工程[J].中國生物工程雜志,2003,23(2):12-16.
[4]韓春春,王繼文,魏守海.乙酰輔酶A羧化酶(ACC)的結構和功能[J].安徽農業(yè)科學,2006,34:413-414,416.
[5]盧善發(fā).植物脂肪酸的生物合成與基因工程[J].植物學通報,2000,17(6):481-491.
[6]Thelen J J and Ohlrogge J B.Metabolic engineering of fatty acid biosynthesis in plants[J].Metabolic Engineering,2002,4:12-21.
[7]Kondo H,Shiratsuch K,and Yoshimoto T,et al.Acetyl-CoA carboxylase from Escherichia coil:gene organization and nucleotide sequence of the biotin carboxylase subunit[J].Proc.Natl.Acad.Sci.USA,1991,88:9730-9733.
[8]Ohlrogge J,Browse J.Lipid Biosynthesis[J].The plant cell,1995,7:957-970.
[9]Sasaki Y,Nagano Y.Plant acety-CoA carboxylase:structure,biosynthesis,regulation,and gene manipulation for plant breeding[J].Biosci.Biotechnol.Biochem.,2004,68(6):1175-1184.
[10]Chapman-Smith A and Cronan J E.Symposium:Nutrition,biochemisty and molecular biology of biotin molecular biology of biotin attachment to proteins[J].J.Nutr.,1999,129:477S–484S.
[11]Alban C,Jullien J,Job D,et al.,Isolation and characterization of biotin carboxylase from Pea Chloroplasts[J].Plant Physiol.,1995,109:927-935.
[12]Li Shyr-Jiann,Cronan J E Jr.The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-coA carboxylase[J].The Journal of Biological Chemistry,1992,267(2):855-863.
[13]Li S J,Cronan J E.The gene encoding the biotin carboxylase subunits of pea acetyl-CoA carboxylase[J].J.Biol.Chem.,1992,267:16841-16847.
[14]Acetyl-CoA carboxylase.Wikipedia,http://en.wikipedia.org/wiki/Acetyl-CoA carboxylase.
[15]Alves J,Westling L,Peters EC,et al.Cloning,expression,and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases[J].Anal.Biochem.,2011,417(1):103-111.
[16]Wan Minxi,Liu Peng,Xia Jinlan,et al.The effect of mixotrophy on microalgal growth,lipid content,and expression levels of three pathway genes in Chlorella sorokiniana[J].Applied Microbiology and Biotechnology,2011,91(3):835-844.
[17]Nikolau B J,Ohlrogge J B,Wurtele E S.Plant biotin-containing carboxylase[J].Arch.Biochem.Biophys.,2003,414:211-222.
[18]Hasslacher M,Tvessa AS,Paltauf F,et al.Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipids metabolism[J].J.Biol.Chem.,1993,268:10946-10952.
[19]Walid A F,Chirala S S,Wakil S J.Cloning of the yeast FAS3 gene and primary structure of yeast Acetyl-CoA carboxylase [J].Proc.Natl.Acde.Sci.USA,1992,89:4534-4538.
[20]Roessler P,Ohlrogge J B.Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the Alga Cyclotella cryptica[J].J.Biol.Chem.,1993,268:19254-19259.
[21]Lopez-Casillas F,Bai D H,Luo X N,et al.Structure of the coding sequence of acetyl-coenayme A carboxylase[J].Proc.Natl.Acad.Sci.USA,1988,85:5784-5788.
[22]Takai T,Yokoyama C,Wade K,et al.Primary structure of chichen liver acetyl-CoA carboxylase deduced from cDNA sequence [J].J.Biol.Chem.,1988,263:2651-2657.
[23]Gornicki P,Podkowinski J,Scappino L A,et al.Wheat acetyl-Coenzyme A carboxylase:cDNA and protein structure [J].Proc.Natl.Sci.USA,1993,91:6860-6864.
[24]Schulte W,Schell J,Topfer R.A gene encoding acetyl-coenzyme A carboxylase from Brassica napus[J].Plant Physiol.,1994,106:793-794.
[25]Shorrosh B S,Dixon RA,Ohlrogge J B.Molecular cloning,characterization,and elicitation of acetyl-CoA carboxylase from alfalfa [J].Proc.Natl.Acad.Sci.USA,1994,91:4323-4327.
[26]Sasaki Y,Hakamada K,Suama Y,et al.Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant [J].J.Biol.Chem.,1993,268(33):25118-25123.
[27]Kozaki A,Mayumi K,Sasaki Y.Thiol-Disulfide exchange between nuclear encode and chloroplast-encode subunits of pea acetyl-CoA carboxylase[J].The Journal of Biological Chemistry,2001,276(43):39919-3992.
[28]Thelen J J,Mekhedov S,Ohlrogge J B.Brassicaceae express multiple isoforms of biotin carboxyl carrier protein in a tissue-specific manner[J].Plant Physiol.,2001,125:2016-2028.
[29]Polakis S E,Guchhait R B,Zwergel E E,et al.Acetyl coenzyme A carboxylase system of Eshcherichia coli,studies on the mechanisms of the biotin carboxylase and carboxyltransferase catalyxed reactions[J].The Journal Biological Chemistry,1974,249(20):6657-6667.
[30]Podkowinski J,Jelenska J,Sirikhachornkit A,et al.Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants[J].Plant Physiology,2003,131:763–772.
[31]Gornichi P,Faris J,King I,et al.Plastid-localized acetyl-CoA carboxylase of bread wheat isencoded by a single gene on each of the three ancestral chromosome sets[J].Proc.Natl.Acad.Sci.USA,1997,94:14179-14184.
[32]Podkowinski J,Sroga G E,Haselkorn R,et al.Structure of a gene encoding acytosolic acetyl-CoA carboxylase of hexaploid wheat[J].Proc.Natl.Acad.Sci.USA,1996,93:1870-1874.
[33]Elborough K M,Winz R,Deka R K,et al.Biotin carboxyl carrier protein and carboxyltransferase subunits of the mutil-subunit from Brassica napus:cloning and analysis of expression during oilseed rape embryogenesis[J].Biochem.J.,1996,315:103-112.
[34]Schulte W,T?pfer R,Stracke R,et al.Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family:indication for plastidic localization of at least oneisoform[J].Proc.Natl.Acad.Sci.USA,1997,94(7):3465-3470.
[35]Kimura Y,Miyake R,Tokumasu Y,et al.Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus[J].Journal of Bateriology,2000,182 (19):5462-5469.
[36]Abu-Elheiga L,Matzuk M M,Kordari P,et al.Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal[J].PNAS,2005,102(34):12011-12016.
[37]Abu-Elheiga L,Almarza-Ortega D B,Baldini A,et al.Human acetyl-CoA carboxylase 2 molecular cloning,characterization,chromosomal map,and evidence for two isoforms [J].The Journal of Biological Chemistry,1997,272 (16):10669-10677.
[38]Mao J,Chirala S S,Wakil S J.Human acetyl-CoA carboxylase 1 gene:Presence of three promoters and heterogeneity at the 5'-untranslated mRNA region[J].PNAS,2003,100(13):7515-7520.
[39]Widmer J,Fassihi K S,Schlichter S C,et,al.Identification of a second human acetyl-CoA carboxylase gene[J].Biochem.J.,1996,316:915-922.
[40]Post-Beittenmiller D,Roughan P G,Ohlrogge J B.In vivo pools of free and acytel acyl carrier proteins in spinach:Evidence for sites of regulation of fatty acid biosynthesis[J].Biol.Chem.,1991,266:1858-1865.
[41]Roughan P G.Stromal concentrations of coenzyme A and its esters are insufficient to account for substrate channelling within the chloroplast fatty acid synthase[J].Biochem.,1997,327:267-273.
[42]李亮,程彥偉.乙酰輔酶A羧化酶在治療肥胖中的潛在作用[J].生命的化學,2007,27(2):180-182.
[43]Tong L.Acetyl-coenzyme a carboxylase:crucial metabolic enzyme and attractive target for drug discovery[J].Cell Mol.Life Sci.,2005,10:1007-1018.
[44]Roesler K,Shintani D,Savage L,et al.Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rape seeds [J].Plant Physiol.,1997,113:75-81.
[45]Shintani D K,Ohlergge J B.Feedback inhibition of fatty acid synthesis in tobacco suspension cells[J].The Plant Journal,1995,7(4):577-587.
[46]姜莉莉,史曉斌.ACCase抑制劑類除草劑的作用機理[J].農藥研究與應用,2010,4:14-17.
[47]衣克寒,付穎,葉非,等.乙酰輔酶A羧化酶抑制劑的構效關系和抗性研究進展[J].植物保護,2012,38(1):11-17.
[48]Deng W,Cai J,Zhang J,et al.Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China.Pesticide Biochemistry and Physiology,2019,158:143-148.
[49]Liu B,Ding F,Wang M ,et al.Cross-resistance pattern to ACCase-inhibiting herbicides in a novel Trp1999Leu mutation American sloughgrass (Beckmannia syzigachne) population[J].Pesticide Biochemistry and Physiology,2019,159:80-84.
[50]Reverdatto S,Beilinson V,Nielsen N C,et al.A multisubunit acetylcoenzyme A carboxylase from soybean[J].Plant Physiology,1999,119:961-978.
[51]Ke J,Wen T N,Nikolau B J,et al.Coordinate regulation of the nuclear and plastidic genes coding for the cubunits of the heteromeric acetyl-coenzyme A carboxylase[J].Plant Physiology,2000,122:1057-1071.
[52]Li Shyr-Jiann,Cronan J E.Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase,which catalyzes the first committed step of lipid biosynthesis[J].Journal of Bacteriology,1993,175(2):332-340.
[53]Hedtke B,B?rner T,Weihe A.Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis[J].Science,1997,277:809-811.
[54]Maliga P.Two plastid RNA polymerases of higher plants:an evolving story[J].Trends Plant Sci.,1998,3:4-6.
[55]Swiatecka-Hagenbruch M,Liere K,Borner T.High diversity of plastidial promoters in Arabidopsis thaliana[J].Mol.Genet.Genomics,2007,277:725-734.
[56]Madoka Y,Tomizawa K,Mizoi J,et al.Chloroplast transformation with modified accD operon increases acetyl CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J].Plant Cell Physiol.,2002,43:1518-1525.
[57]Shinozaki K,Ohme M,Tanaka M,et al.The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression [J].EMBO J.,1986,5:2043-2049.
[58]Nagano Y,Matsuno R,Sasaki Y.Sequence and transcription analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts[J].Curr.Genet.,1991,20:431-436.
[59]Hajdukiewicz P T J,Allison L A,Maliga P.The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids [J].EMBO J.,199716:4041-4048.
[60]Hirata N,Yonekura D,Yanagisawa S,et al.Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription[J].Plant Cell Physiol.,2004,45(2):176-186.
[61]Sasaki Y,Kozaki A,Ohmori A,et al.Chloroplast RNA editing required for functional acetyl-CoA carboryase in plants [J].The Journal of Biological Chemistry,2001,276(6):3937-3940.
[62]Sugiura M,Hirose T,Sugita M.Evolution and mechanism of translation in chloroplasts[J].Annu.Rev.Genet.,1998,32:437-459.
[63]Hou B K,Zhou Y H,Wang L H,et al.Chloroplast transformation in oilseed rape[J].Tansgenic Res.,2003,12:111-114.
[64]Shintani D,Roesler K,Shorrosh B,et al.Antisense expression and overexpression of biotin carboxylase in tobacco leaves[J].Plant Physiol.,1997,114(3):881-886.
[65]Roesler K R,Schorrosh B S,Ohlrogge J B.Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene [J].Plant Physiol.,1994,105:611-617.
[66]Sasaki Y,Konishi T,Nagano Y.The compartmentation of acetyl coenzyme A carboxylase in plants[J].Plant Physiol.,1995,108:445-449.
[67]楚敏,趙虎基,鄭明剛,等.谷子乙酰輔酶A羧化酶BC功能域的克隆及原核表達載體的構建[J].植物生理學報,2004,22(5):408-410.
[68]Lee S S,Jeong W J,Bae J M,et al.Characterization of the plastid-encodeed carboxyltransferase subunit (accD) gene of potato [J].Mol.Cell,2004,17(3):422-429.
[69]Herbert D,Price L J,Alban C,et al.Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves[J].Biochem.J.,1996,318:997-1006.
[70]Li Z G,Yin W B,Guo H,et al.Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species:cloning,expression patterns,and evolution[J].Genome,2010,53(5):360-370.
[71]武玉永,譚秀華,馬立新.甘藍型油菜乙酰輔酶A羧化酶3個亞基的克隆及其表達[J].安徽農業(yè)科學,2008,36(10):4002-4006.
[72]Li M,Xia H,Zhao C,et al.Isolation and characterization of putative acetyl-coA carboxylases in Arachis hypogaea L.[J].Plant Mol.Biol.Rep.,2010,28:58-68.
[73]Qiao Z and Liu J.Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes[J].Progress in Natural Science,2007,17(12):1412-1418.
[74]Nakkaew A, Chotigeat W, Eksomtramage T,et al.Cloning and expression of a plastid-encoded subunit,beta-carboxyltransferase gene(accD) and a nuclear-encoded subunit,biotin carboxylase of acetyl-CoA carboxylase from oil palm (Elaeis guineensis Jacq.) [J].Plant Science,2008,175(4):497-504.
[75]Gu K,Chiam H,Tian D,et al.Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas[J].Plant Sci.,2011,180 (4):642-649.
[76]武玉永,馬立新,蔣思婧.甘藍型油菜羧基轉移酶A亞基全長cDNA的克隆及在大腸桿菌中表達[J].生物化學與生物物理進展,2004,31(9):847-854.
[77]盧捷,姚玉峰,姜衛(wèi)紅,等.地中海擬無枝菌酸菌U32中生物素羧基載體蛋白結構基因的克隆、表達及轉錄[J].微生物學報,2003,43(1):56-64.
[78]李孟軍,夏晗,王興軍,等.花生野生近緣種生物素羧基載體蛋白基因的克隆與結構分析[J].華北農學報,2009,24(6):6-10.
[79]Cui Y,Liu Z,Zhao Y,et al..Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in Upland cotton.Plant Mol.Biol.Rep.,2017,35:287-297.
[80]Atsushi Inamura.Yayoi Ohashi,Etsuko Sato,et al.Intraspecific sequence variation of chloroplast DNA reflecting variety and geographical distribution of Polygonurn cuspidatum(Polygonaceae) in Japan[J].J.Plant Res.,2000,113:419-426.
[81]Matsuda Yuji,Yoshimura Hitoshi,KanamotoHirosuke,et al.Sequence variation in the rbcL-accD region in the chloroplast genome of Moraceae[J].Plant Biotechnology,2005,22(3):231-233.
[82]Alrefai R,Berke T G,Rocheford T R.Quantitative trait locus analysis of fatty acid concentrations in maize[J].Genome,1995,38:894-901.
[83]Kianian S F,Egli M A,Phillips R L,et al.Association of major groat oil content QTL and an acetyl-CoA carboxylase gene in oat[J].Theor.Appl.Genet.,1999,98:884-894.
[84]Yang X,Guo Y,Yan J,et al.Major and minor QTL and epistasis contribute to fat compositions and oil concentration in high-oil maize[J].Theor.Appl.Genet.,2010,120:665-678.
[85]陳江林,幸偉年,唐佰平.油桐種仁不同發(fā)育時期ACCase活性與含油率相關性分析[J].南方林業(yè)科學,2016,44(5):14-16,34.
[86]王保明.油茶ACCase基因的克隆及功能研究[D].長沙:中南林業(yè)科技大學,2012.
[87]Wang B,Tan X,Jiang J,et al.Molecular cloning and expression of two genes encoding ACCase subunits of Camellia oleifera (Theaceae)[J]. Pak.J.Bot.,2018,50(1):103-110.
[88]王哲,油桐異質型ACCase基因的克隆及功能表達研究[D].長沙:中南林業(yè)科技大學,2015.
[89]Cui Y,Zhao Y,Wang Y,et al.Genome-wide identification and expression analysis of the biotin carboxyl carrier subunits of heteromeric acetyl-CoA carboxylase in Gossypium[J].Front.Plant Sci.,2017,8:624.
[90]崔宇鵬.棉花異質型ACCase基因家族鑒定與功能分析[D].北京:中國農業(yè)大學,2017.
[91]Kozaki A,Kamado K,Nagano Y,et al.Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase [J].Biol.Chem.,2000,275(14):10702-10708.
[92]Kahlau Sand Bock R.Plastid transcriptomics and translatomics of tomato fruit development and chloroplast- to-chromoplast differentiation:chromoplast gene expression largely serves the production of a single protein[J].Plant Cell,2008,20:856-874.
[93]Davias M S,Solbianti J,Cronan J E.Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherich coli[J].Biol.Chem.,2000,275(37):28593-28598.
[94]Zha W, Rubin-Pitel S B, Shao Z,et al.Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J].Metabolic Engineering,2009,11(3):192-198.
[95]Ohlrogge J B,Roesler K R and Shorrosh B S.Methods of increasing oil content of seeds[P].United States Patent:5925805,1999-7-20.
[96]Klaus,D,Ohlrogge,J B,Neuhaus H E,et al.Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase[J].Planta,2004,219:389-396.
[97]Sellwood C,Slabas A R,Raw sthorne S.Effects of manipulating expression of acetyl-CoA carboxylase in Brassica napus L.embryos[J].Biochemical Society,2000,28:598-600.
[98]Skarjinskaia M,Svab Z,and Maliga P.Plastid transformation in Lesquerella fendleri,an oilseed Brassicacea[J].Transgenic Res.,2003,12:115-122.
[99]Kode V,Mudd E A,Iamtham S,et al.The tobacco plastid accD gene is essential and is required for leaf development [J].Plant J.,2005,44 (2):237-244.
[100]Thelen J J and Ohlrogge J B. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana[J]. Plant. J., 2002, 32:419-431. (責編:張宏民)