祖麗哈也提·艾合買提 吐爾洪江·阿布都克力木



摘 要:極值主要解決在一定條件下如何制造出“最多的產品”“最少的材料”“最高的效率”“最低的成本”等問題。在初等數學中,求極值的方法有很多種。在教材中,通常利用代數、三角、幾何等知識求極值。
關鍵詞:極值;初等方法
數學無處不在。我們經常會想到這個數學問題和我們現實生活之間有何種聯系?在日常生活中真的需要使用我們學到的那么復雜的公式嗎?事實上,數學從現實生活出發,延伸出一系列問題。追溯歷史,我們可以找到許多例子。本文著重探討了極值在現實生活中的運用,以便一線老師在課堂上能夠更加生動地解釋數學在實際生活中的用處。
“極值”這一概念在高中階段講到函數極值時才會被引出。事實上,學生們以前也接觸過很多極值問題,但一直沒有意識到自己遇到的問題就是極值問題。例如,在一個長6厘米,寬4厘米的矩形中,剪出面積最大的正方形。極值主要解決在一定條件下如何制造出“最多的產品”“最少的材料”“最高的效率”“最低的成本”等問題。在初等數學中,求極值的方法有很多種。在教材中,我們通常利用代數、三角、幾何等知識求極值。這些極值問題緊扣教材知識,便于學生聯系實際,從數學問題出發,回歸生活,進一步激發學生的學習興趣。筆者選取了一些常見的例子作為實例,分析總結了四種中學老師和學生能接受的方法。
一、基本概念
本題是一道概率題,是我們生活中常見的,但是在課堂上少見的一道題。這道題完美的解釋了極值在概率中的應用,并用求導的方法巧妙地解出了本題。
求導法是中學數學中求極值最有效、最快的方法。
(三)利用不等式來求出極值
學生接觸數學不僅能從教科書開始,也可以從生活中的點點滴滴開始。久而久之,學生也會不經意間地觀察周圍的事和物,通過生活看到教科書中的數學。學生在學習極值時,通過練習達到熟能生巧的地步??梢岳靡阎臄祵W知識解決生活中的實際問題,老師也能豐富教學內容,從而激發學生的學習興趣。
參考文獻:
[1]劉邵學.數學(選修2-2)[M].第二版.北京:人民教育出版社,2007.
[2]石生民.高中數學課例點評[M].西安:陜西師范大學出版社,2008.
[3]王淑紅.一元函數極值問題求解的幾種初等方法[EB].百度文庫,2014.
[4]王文惠.用初等數學方法求極值[J].中學物理,2003.
[5]王延源.殷啟正,沈厚豐.條件極值的十種初等解法[J].棗莊師專學報,1993.
基金項目:國家自然科學基金資助項目(NO.11261061,NO.61362039,NO.10661010);新疆維吾爾自治區自然科學基金資助項目(NO.2007211104);新疆師范大學數學教學資源開發重點實驗室招標課題(NO.XJNUSY082017B03)
作者簡介:祖麗哈也提·艾合買提(1995— ),女,維吾爾族,新疆吐魯番人,碩士研究生,研究方向為初等數學教學與研究。