方程 馬淑芳 萊蒙 鐘霖



摘 ?要: 考慮了一類線性Volterra積分-微分方程(VIDEs)的多區間泰勒配置解法,其主要技術是將求解線性VIDEs轉化為求解線性代數方程組. 該方法的優點是易于實現,適用于長時間的計算.采用基于殘差函數的誤差分析法分析了方法的誤差,通過算例驗證了所提出方法的適用性和有效性.
關鍵詞: 線性Volterra積分-微分方程(VIDEs); 泰勒配置方法; 多區間; 近似解
中圖分類號: O 241 ???文獻標志碼: A ???文章編號: 1000-5137(2021)01-0008-06
Abstract: In this paper,we consider a multiple interval Taylor collocation method for a class of linear Volterra integro-differential equations (VIDEs). The main technique is to reduce the linear Volterra integro-differential equations (VIDEs) to a linear algebraic system. The advantage of this method is that it is easy to implement and suitable for long-time calculation. And we analyze the error of the method based on residual function. Finally,the applicability and effectiveness of the method are verified by an example.
Key words: linear Volterra integro-differential equations(VIDEs); Taylor collocation method; multiple interval; approximation solution
0 ?引 言
積分-微分方程在物理和工程問題中都有許多應用,例如一維黏彈性問題、建立電子束器件場理論模型等 [1].此外,一些涉及具有記憶的材料的現象可用Volterra積分-微分方程的邊值問題來描述[2].
通常方程(1)的精確解是不易獲得的,因此,研究方程(1)的近似解十分必要.近幾十年來,各種數值方法被用來分析一階Volterra積分-微分方程.例如:BRUNNER[3]研究了Volterra積分-微分方程數值解的高階方法,且采用多項式樣條配置法分析了具有無界延遲的Volterra積分-微分方程和非線性Volterra積分-微分方程[4].YI[5-7]采用了連續Petrov-Galerkin方法研究了具有光滑和非光滑核的一階Volterra積分-微分方程.此外,研究Volterra積分-微分方程的數值方法還有Euler法[8]、Runge-Kutta法[9]、線性多步法[10-11]和Galerkin法[12-13]等.
在近似計算中,泰勒配置法是一種簡單又十分有效的方法,被廣泛應用于求解各類微分、積分方程.例如:GOKMEN等[14]采用泰勒配置法研究了延遲捕食-被捕食系統的數值解.WANG等[15]采用泰勒配置法分析了Volterra-Fredhdm積分-方程的數值解,并分析了該方法的收斂性.
基于上述討論,本研究的主要目的是用多區間泰勒配置法求解一類線性Volterra積分-微分方程的近似解.多區間泰勒配置法的優點是易于實現,適用于長時間計算.
1 ?算子矩陣
5 ?結論
本文作者提出了一種求解一類線性Volterra積分-微分方程(VIDEs)的多區間泰勒配置法,該法運用殘差修正技術對近似解的精度進行檢驗.數值實驗結果表明:多區間泰勒配置法是一種十分有效的計算方法,且算法簡單.同時該法可以有效地應用于各種類似問題,例如高階微積分方程和Volterra積分方程等.
參考文獻:
[1] BURTON T A.Volterra Integral and Differential Equations [M].New York:Academic Press,1983.
[2] AGARWAL R P,OREGAN D.Integral and Integro-Differential Equations:Theory,Methods and Applications [M].Amsterdam:Gordon and Breach,2000,2.
[3] BRUNNER H.High-order methods for the numerical solution of Volterra integro-differential equations [J].Journal of Computational and Applied Mathematics,1986,15(3):301-309.
[4] BRUNNER H.Collocation Methods for Volterra Integral and Related Functional Equations [M].Cambridge:Cambridge University Press,2004.
[5] YI L J.An h-p version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations [J].Journal of Scientific Computing,2015,65:715-734.