999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLEASON’S PROBLEM ON FOCK-SOBOLEV SPACES?

2021-04-08 12:52:42JinengDAI戴濟(jì)能JingyunZHOU周靜云

Jineng DAI(戴濟(jì)能)Jingyun ZHOU(周靜云)

Department of Mathematics,School of Science,Wuhan University of Technology,Wuhan 430070,China E-mail:jinengdai@whut.edu.cn;zhou19950614@163.com

Abstract In this article,we solve completely Gleason’s problem on Fock-Sobolev spaces Fp,mfor any non-negative integer m and 0

Key words Fock-Sobolev space;Gleason’s problem

1 Introduction

where dv is the normalized Lebesgue volume measure on Cso that the constant function 1 has norm 1 in L.Here we are abusing the term“norm”for 0

Let Fdenote the space of holomorphic functions in L.When m=0,the space Fis called the Fock space or the Segal-Bargmann space(see[1–7]).For a multi-index α=(α,···,α),where each α(1≤k≤n)is a non-negative integer,we write

where?denotes partial differentiation with respect to the k-th component.An equivalent characterization for the space Fis as follows(see[4]):f∈Fif and only if?f belongs to the Fock space for each multi-index α with|α|≤m.In this sense we call Fthe Fock-Sobolev space.The space Fis a closed subspace of the Hilbert space Lwith inner product

The orthogonal projection P :L→Fis given by

where K(z,w) is the reproducing kernel of the Fock-Sobolev space F.It is well known that

for all 0

In this article,we prefer to use the integral form of hto express the reproducing kernel of Fock-Sobolev spaces F.

Let X be a space of holomorphic functions on a domain ? in C.Gleason’s problem for X is the following:if a ∈? and f ∈X,do there exist functions f,···,fin X such that

In this article,we solve Gleason’s problem on Fock-Sobolev spaces Fin a stronger form for the full range of p with 0

for all z ∈C(see Theorem 2.9 and 2.10).Because the form of the Bergman kernel of F(especially for m ≥1) is a bit complicated,some techniques are used for dealing with many integrals.

2 Gleason’s Problem on Fock-Sobolev Spaces

In this section,we begin with several useful lemmas,which are needed in the proof of the solvability of Gleason’s problem on Fock-Sobolev spaces F.

Lemma 2.1

Let 0

0.There exists a constant C only depending on p,α and β such that

for all holomorphic functions f and anti-holomorphic functions g on C.

Proof

It is known that g is anti-holomorphic if and only if g is holomorphic.By Lemma 4 in [4],we have that

Lemma 2.2

For fixed a in C,we have that

Remark 2.5

If we replace the quantity |z|(resp.|w|) by (1+|z|)(resp.(1+|w|)) in Lemma 2.4,then the inequality is also valid.

An important tool for tackling the boundedness of integral operators on L(1

Lemma 2.6

([15]) Let (X,μ) be a measure space and H be a non-negative measurable function on the product space X ×X.Let 1

Now we state our main results.We first solve Gleason’s problem on the Fock space,then we turn to generalized Fock-Sobolev spaces.

Theorem 2.9

For fixed a in Cand any 0

for all z in Cand f in F.

主站蜘蛛池模板: 色综合久久无码网| 国产精品无码AⅤ在线观看播放| 自拍中文字幕| 日韩在线欧美在线| 中文字幕伦视频| 国产女人喷水视频| 免费看av在线网站网址| 一级全黄毛片| 色婷婷天天综合在线| 国产区在线观看视频| 亚洲一区网站| 国国产a国产片免费麻豆| 99久久无色码中文字幕| 日韩欧美中文| 一本久道热中字伊人| 欧美伦理一区| 亚洲第一成年网| 久久久久亚洲AV成人网站软件| 久久性视频| 国产三级韩国三级理| 国产精品综合久久久| 亚洲最大看欧美片网站地址| 国产尤物jk自慰制服喷水| 一级做a爰片久久毛片毛片| 国产精品深爱在线| 欧美日韩精品一区二区视频| 中文字幕日韩丝袜一区| 亚洲精品成人福利在线电影| 欧美国产三级| 色偷偷av男人的天堂不卡| 99er这里只有精品| 免费一极毛片| 中文字幕2区| 国产三级国产精品国产普男人| 国产乱码精品一区二区三区中文 | 五月天香蕉视频国产亚| 99久久精品免费看国产免费软件| www亚洲天堂| 欧美亚洲日韩中文| 日本一区二区不卡视频| 日韩免费成人| 亚洲av无码专区久久蜜芽| 91精品国产综合久久香蕉922 | 一级毛片免费不卡在线视频| 99ri精品视频在线观看播放| 老司国产精品视频| 亚洲91精品视频| 四虎精品黑人视频| 91美女视频在线观看| 呦女亚洲一区精品| 国产小视频a在线观看| 婷婷色婷婷| 精品视频一区在线观看| 男女性色大片免费网站| 亚洲中字无码AV电影在线观看| 制服无码网站| 精品三级网站| 一区二区偷拍美女撒尿视频| 国产粉嫩粉嫩的18在线播放91| 久久夜色撩人精品国产| 亚洲午夜国产精品无卡| 色综合网址| 国产欧美一区二区三区视频在线观看| 亚洲精选高清无码| 久爱午夜精品免费视频| 久草视频精品| 日韩专区第一页| 天堂在线亚洲| 青草视频在线观看国产| 亚洲浓毛av| 99热这里只有精品免费| 亚洲色无码专线精品观看| 日韩欧美中文字幕在线韩免费| 久久久久人妻一区精品色奶水 | 成人国产免费| 青青草国产一区二区三区| 亚洲天堂在线免费| 久久黄色毛片| 午夜福利视频一区| 91精品国产自产在线老师啪l| 中国一级特黄大片在线观看| 精品视频一区在线观看|