999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLEASON’S PROBLEM ON FOCK-SOBOLEV SPACES?

2021-04-08 12:52:42JinengDAI戴濟(jì)能JingyunZHOU周靜云

Jineng DAI(戴濟(jì)能)Jingyun ZHOU(周靜云)

Department of Mathematics,School of Science,Wuhan University of Technology,Wuhan 430070,China E-mail:jinengdai@whut.edu.cn;zhou19950614@163.com

Abstract In this article,we solve completely Gleason’s problem on Fock-Sobolev spaces Fp,mfor any non-negative integer m and 0

Key words Fock-Sobolev space;Gleason’s problem

1 Introduction

where dv is the normalized Lebesgue volume measure on Cso that the constant function 1 has norm 1 in L.Here we are abusing the term“norm”for 0

Let Fdenote the space of holomorphic functions in L.When m=0,the space Fis called the Fock space or the Segal-Bargmann space(see[1–7]).For a multi-index α=(α,···,α),where each α(1≤k≤n)is a non-negative integer,we write

where?denotes partial differentiation with respect to the k-th component.An equivalent characterization for the space Fis as follows(see[4]):f∈Fif and only if?f belongs to the Fock space for each multi-index α with|α|≤m.In this sense we call Fthe Fock-Sobolev space.The space Fis a closed subspace of the Hilbert space Lwith inner product

The orthogonal projection P :L→Fis given by

where K(z,w) is the reproducing kernel of the Fock-Sobolev space F.It is well known that

for all 0

In this article,we prefer to use the integral form of hto express the reproducing kernel of Fock-Sobolev spaces F.

Let X be a space of holomorphic functions on a domain ? in C.Gleason’s problem for X is the following:if a ∈? and f ∈X,do there exist functions f,···,fin X such that

In this article,we solve Gleason’s problem on Fock-Sobolev spaces Fin a stronger form for the full range of p with 0

for all z ∈C(see Theorem 2.9 and 2.10).Because the form of the Bergman kernel of F(especially for m ≥1) is a bit complicated,some techniques are used for dealing with many integrals.

2 Gleason’s Problem on Fock-Sobolev Spaces

In this section,we begin with several useful lemmas,which are needed in the proof of the solvability of Gleason’s problem on Fock-Sobolev spaces F.

Lemma 2.1

Let 0

0.There exists a constant C only depending on p,α and β such that

for all holomorphic functions f and anti-holomorphic functions g on C.

Proof

It is known that g is anti-holomorphic if and only if g is holomorphic.By Lemma 4 in [4],we have that

Lemma 2.2

For fixed a in C,we have that

Remark 2.5

If we replace the quantity |z|(resp.|w|) by (1+|z|)(resp.(1+|w|)) in Lemma 2.4,then the inequality is also valid.

An important tool for tackling the boundedness of integral operators on L(1

Lemma 2.6

([15]) Let (X,μ) be a measure space and H be a non-negative measurable function on the product space X ×X.Let 1

Now we state our main results.We first solve Gleason’s problem on the Fock space,then we turn to generalized Fock-Sobolev spaces.

Theorem 2.9

For fixed a in Cand any 0

for all z in Cand f in F.

主站蜘蛛池模板: 亚洲无卡视频| 操操操综合网| 91无码网站| 精品丝袜美腿国产一区| 国产成人精品免费视频大全五级| 国产精品极品美女自在线| 2021国产精品自产拍在线| 美女被操91视频| 怡春院欧美一区二区三区免费| 国产又大又粗又猛又爽的视频| 男女猛烈无遮挡午夜视频| 一区二区三区四区精品视频 | 特黄日韩免费一区二区三区| 无码精品福利一区二区三区| 亚洲日本中文字幕乱码中文| 国产成人综合在线观看| 成人精品在线观看| 久久国产精品电影| 亚洲永久免费网站| 99国产精品国产| 福利视频久久| 亚洲丝袜第一页| 欧美福利在线观看| 国产网站在线看| 日本国产精品| 99中文字幕亚洲一区二区| 成人福利在线观看| 欧美激情二区三区| 丁香综合在线| 欧美日韩一区二区三| 午夜啪啪福利| 免费va国产在线观看| 一级成人a毛片免费播放| a毛片免费观看| 午夜国产理论| 一级一级一片免费| 国产微拍精品| 男人天堂亚洲天堂| 成色7777精品在线| 欧美日韩在线第一页| 青草视频免费在线观看| 午夜激情婷婷| 狠狠色丁婷婷综合久久| 日本午夜影院| 一级全黄毛片| 国产在线98福利播放视频免费| 欧美精品v欧洲精品| 国产在线观看成人91| 露脸真实国语乱在线观看| 无码电影在线观看| 国产高潮流白浆视频| 国产欧美日韩资源在线观看 | 国产精品三级专区| 99草精品视频| 高清视频一区| 无码福利日韩神码福利片| 久久国产V一级毛多内射| 一级毛片基地| 72种姿势欧美久久久大黄蕉| 女人18毛片一级毛片在线 | 亚洲人成网站18禁动漫无码| 国产99在线观看| 亚洲一区二区视频在线观看| 男人天堂亚洲天堂| 自拍中文字幕| 国产视频久久久久| 尤物在线观看乱码| 精品福利国产| a级毛片免费播放| 免费全部高H视频无码无遮掩| 亚洲国产精品VA在线看黑人| 国产亚洲高清在线精品99| 欧美精品在线视频观看| 久久久久久久久久国产精品| www中文字幕在线观看| 久久久久国产精品嫩草影院| 亚洲国产中文在线二区三区免| 2021国产在线视频| 久久这里只有精品66| 最近最新中文字幕在线第一页| 色哟哟国产精品一区二区| 高清欧美性猛交XXXX黑人猛交|