999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

深度學習在情感識別上的研究

2021-04-13 00:36:42周偉付曉峰常耀中
科技與創新 2021年6期
關鍵詞:情感模型

周偉,付曉峰,常耀中

深度學習在情感識別上的研究

周偉,付曉峰,常耀中

(杭州電子科技大學,浙江 杭州 310018)

針對現有情感分析算法在處理大量的人臉數據時未能展現良好魯棒性的問題,提出一種新的情感識別方法。提出Z-libface人臉檢測器,并設計出一種新的卷積神經網絡模型RT-CNN,同時使用大型表情數據集fer2013以及改良后的FER+,訓練出一個比較好的模型。使用提出的卷積神經網絡RT-CNN在fer2013、FER+兩個表情數據集上進行10倍交叉驗證,取10次驗證準確率的平均值,在fer2013及FER+上取得了66.72%與80.02%的準確率。

Z-libaface人臉檢測;fer2013數據集;FER+數據集;深度學習

1 引言

情感是人類心理感受的一種重要特征[1],在人們的交流中起著非常重要的作用。情感識別就是利用計算機進行人類情感圖像的獲取、情感圖像的預處理、情感特征的提取和情感分類的過程,它通過計算機分析人的情感信息,從而推斷人的心理狀態,最后實現人機之間的智能交互。

最近關于人臉情感識別的研究大多基于深度學習。在大多數情況下,CNN的訓練依賴大量的數據,在模型訓練中,樣本的大小會直接影響模型和網絡,當樣本有限時,模型很容易發生過擬合現象。因此本文直接使用數據量較大的fer2013數據集以及其改良后的FER+數據集。

本文的主要貢獻如下:提出Z-libface人臉檢測器;利用FER+對fer2013數據集進行改良和優化,提高約14%的準確率;提出RT-CNN模型,在fer2013、FER+數據集上取得較好的效果。

2 基于Z-libface的人臉檢測

目前的人臉檢測器[2]主要有Opencv自帶的Haar檢測器、Dlib人臉檢測器、libface人臉檢測器等。

本文提出的Z-libface人臉檢測器是在libface人臉檢測器的基礎上進行改良得到的,經實驗發現,libface人臉檢測器有如下缺陷:當人臉是側臉時,截取區域不當,最后得到的人臉截取圖片有近1/5的空白區域。

針對libface人臉檢測器的缺陷,本文利用該檢測器檢測人臉時提供的信息包括人臉68個特征點的坐標、截取矩形框左上角的橫坐標、截取矩形框寬、人臉左右偏轉時人臉偏轉的角度。按照opencv的規則,圖片左上角為坐標原點,順時針旋轉為負,逆時針旋轉為正,當人臉向左偏轉時為正,向右偏轉時為負。

3 RT-CNN模型

本文設計出一種新的卷積神經網絡模型RT-CNN,其網絡模型結構以及參數設置如表1所示。在輸入層之后加入1*1的卷積層使輸入增加非線性的表示、加深了網絡、提升了模型的表達能力,同時基本不增加計算量。為了防止過擬合問題,在最后兩個全連接層中,把全連接層之間的連接隨機丟棄50%,在卷積層3、4、5中分別進行2層、1層、2層全零填充,保證輸出特征圖的長寬不變。

表1 RT-CNN模型結構及參數設置

種類核步長輸出丟棄 輸入 48*48*1 卷積層11*1148*48*32 卷積層21*1148*48*32 卷積層35*5148*48*32 池化層13*3223*23*32 卷積層43*3123*23*32 池化層23*3211*11*32 卷積層55*5111*11*64 池化層33*325*5*64 全連接層1 1*1*2 04850% 全連接層2 1*1*1 02450% 輸出 1*1*7

4 實驗結果與分析

在fer2013數據集中有一些圖像是黑白圖,同時有很多的圖片情感標注并不準確,這些情況對訓練造成很大的干擾,有國外學者對fer2013數據集進行重新標簽化,數據集叫FER+,圖片順序與fer2013相對應。把錯誤的標簽改成正確的標簽,剔除了fer2013數據集中的黑白圖。

為了保證實驗結果的有效性,本次實驗采取了10倍交叉驗證。將fer2013數據集平均分為10組。每次選取其中的9組作為訓練集,另外1組作為驗證集,進行10次實驗,最后取10個結果的均值作為最終的準確率。這樣保證了每個樣本都可以作為驗證集和訓練集。對FER+數據集進行了同樣的處理,本文模型與其他模型在fer2013數據集上識別率對比的結果如表2所示。

表2 本文模型與其他模型在fer2013數據集上識別率對比結果

名次模型準確率/(%) 1RBM71.16 2Unsupevised69.26 3Maxim Milakov68.82 4Radu+marius+Cristi67.49 5本文模型66.72 ……… 10sayit62.19

在實驗過程中,各參數保持不變,當訓練集設置為fer2013改良后的FER+時,最后的訓練準確率為83.30%,驗證準確率為80.02%。相比在fer2013數據集上識別率66.72%而言,本文模型在改良后的fer2013數據集 FER+上,訓練集和驗證集準確率提升約14%。

5 結語

本文針對人臉檢測,提出性能更加高效的Z-libface人臉檢測器。其次,提出一種新的人臉情感識別算法在fer2013數據集上取得了66.72%的識別率,并同時利用新的分類規則對fer2013數據集進行優化得到FER+數據集,本文算法在FER+數據集上取得了80.02%的識別率,在很大程度上改善了識別效果。雖然取得了一定的成果,但還存在一些問題,比如識別率有待進一步提高等。在接下來的工作中會繼續探索人臉檢測器的增強、網絡結構以及參數的設置等。

[1]劉錦峰.基于卷積神經網絡的學生課堂面部表情識別研究[J].高教學刊,2020(7):67-69.

[2]汪欣,吳薇,曾照.基于視頻的人臉檢測算法研究[J].電子科技,2020,33(2):25-31.

2095-6835(2021)06-0097-02

TP18;TP391.41

A

10.15913/j.cnki.kjycx.2021.06.036

周偉(1998—),男,本科,研究方向為人工智能、計算機視覺、圖像處理。付曉峰(1981—),女,博士,副教授,研究方向為人工智能、計算機視覺、圖像處理。常耀中(1997—),男,本科,研究方向為人工智能、計算機視覺、知識圖譜。

〔編輯:嚴麗琴〕

猜你喜歡
情感模型
一半模型
如何在情感中自我成長,保持獨立
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
被情感操縱的人有多可悲
失落的情感
北極光(2019年12期)2020-01-18 06:22:10
情感
如何在情感中自我成長,保持獨立
3D打印中的模型分割與打包
情感移植
發明與創新(2016年6期)2016-08-21 13:49:38
主站蜘蛛池模板: 免费国产一级 片内射老| 亚洲日韩高清在线亚洲专区| 黄色污网站在线观看| 久久99国产乱子伦精品免| 欧美日韩国产精品va| 中文字幕永久在线观看| 亚洲国产中文欧美在线人成大黄瓜 | 亚洲国产成人超福利久久精品| 婷婷激情亚洲| 亚洲综合中文字幕国产精品欧美 | 中文字幕日韩视频欧美一区| 中文纯内无码H| 亚洲性日韩精品一区二区| 视频国产精品丝袜第一页| 亚洲乱强伦| 久久这里只有精品国产99| 亚洲AV人人澡人人双人| 欧美精品一二三区| 精品综合久久久久久97超人| 欧美v在线| 亚洲一区二区在线无码| 亚洲欧美另类专区| 夜精品a一区二区三区| 亚洲成aⅴ人片在线影院八| 波多野结衣一级毛片| 亚洲中文字幕日产无码2021| 亚洲人成影视在线观看| 丝袜久久剧情精品国产| 97精品久久久大香线焦| 午夜在线不卡| 亚洲日韩在线满18点击进入| 在线五月婷婷| 亚洲激情99| 国产高潮流白浆视频| 呦视频在线一区二区三区| 色婷婷综合激情视频免费看| 国产人成乱码视频免费观看 | 国产99精品视频| 中文字幕日韩视频欧美一区| 国产精欧美一区二区三区| 精品少妇人妻一区二区| 国产精品真实对白精彩久久| 久久国产精品嫖妓| 国产精品综合久久久| 92午夜福利影院一区二区三区| 亚洲乱码精品久久久久..| 国产精品欧美激情| 国产69精品久久| 日韩亚洲综合在线| 夜色爽爽影院18禁妓女影院| 国产精品九九视频| 久久无码免费束人妻| 国产毛片片精品天天看视频| 伊人色天堂| 91在线免费公开视频| 91无码人妻精品一区| 国产精品成人啪精品视频| 欧美一区二区人人喊爽| 婷婷综合色| 91免费片| 青草精品视频| 日韩欧美中文字幕在线精品| 午夜无码一区二区三区| 亚洲国产中文欧美在线人成大黄瓜| 欧美亚洲一区二区三区导航| 欧美福利在线观看| 特级毛片免费视频| 国产成人综合网| 亚洲无码视频图片| 色悠久久久久久久综合网伊人| 亚洲色图综合在线| 国产免费一级精品视频| 男女精品视频| 狠狠v日韩v欧美v| 亚洲综合网在线观看| 国产欧美视频一区二区三区| 国产午夜精品一区二区三| 五月天综合婷婷| 久久精品亚洲中文字幕乱码| 国产在线麻豆波多野结衣| 成人毛片免费在线观看| 亚洲欧美在线精品一区二区|