999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

環境和人體中氯代/溴代多環芳烴的研究進展——污染來源、分析方法和污染特征

2021-04-30 03:46:38劉明洋李會茹宋愛民胡建芳盛國英彭平安
中國環境科學 2021年4期
關鍵詞:污染環境檢測

劉明洋,李會茹,宋愛民,胡建芳,盛國英,彭平安*

環境和人體中氯代/溴代多環芳烴的研究進展——污染來源、分析方法和污染特征

劉明洋1,4,李會茹2,3,宋愛民1,4,胡建芳1,盛國英1,彭平安1,4*

(1.中國科學院廣州地球化學研究所,有機地球化學國家重點實驗室和廣東省環境資源利用與保護重點實驗室,廣東 廣州 510640;2.華南師范大學環境研究院,廣東省化學品污染與環境安全重點實驗室&環境理論化學教育部重點實驗室,廣東 廣州 510006;3.華南師范大學環境學院,廣東 廣州 510006;4.中國科學院大學,北京 100049)

氯代/溴代多環芳烴(Cl/Br-PAHs)是一類具有與二噁英和多環芳烴(PAHs)相似結構和致癌效應的新興持久性毒害污染物,其環境行為歸趨和潛在風險受到了高度重視.本研究以"Cl-PAH*" OR "Br-PAH*" OR "H-PAH*" OR "chlorinated PAH*" OR "brominated PAH*" OR "halogenated PAHs" OR "chlorinated polycyclic aromatic hydrocarbon*" OR "brominated polycyclic aromatic hydrocarbon*" OR "halogenated polycyclic aromatic hydrocarbon*"為主題對Web of Science核心合集數據庫進行了檢索,并著重對環境/人體中Cl/Br-PAHs污染來源、污染特征和分析方法的研究進展進行了綜述.結果表明:截止2021年1月,環境/人體中Cl/Br-PAHs的相關文獻共計225篇.這些研究表明:Cl/Br-PAHs主要來源于廢棄物焚燒、汽車尾氣排放、金屬冶煉、電子垃圾拆解等熱過程和光化學反應過程;目前已在全球各類環境介質中被檢出,并表現出持久存在性、長距離遷移性和生物可利用性;Cl/Br-PAHs被證實具有與其母體PAHs相似甚至更強的毒性,但目前對其形成機理和環境行為尚不明確,也尚未有統一有效且精準的分析方法,已報道的化合物種類十分有限,總體研究處于起步階段.結合目前Cl/Br-PAHs的研究現狀和存在的問題,今后應在其高通量精準篩查分析、源排放指紋識別追溯、環境遷移轉化行為及潛在風險上開展研究.

氯代/溴代多環芳烴;芳香受體效應;氣相色譜-質譜聯用

氯代/溴代多環芳烴(Cl/Br-PAHs)是多環芳烴(PAHs)芳環結構上的一個或多個氫原子被氯/溴原子取代而形成的衍生物[1],結構上類似于氯/溴代二噁英和PAHs的雜交體,其形成過程也與二噁英和PAHs類似[2].但不同的是,雖然Cl/Br-PAHs的環境污染問題在20世紀70年代已引起注意,但整體研究起步較晚[3],直到21世紀初相關研究才得以進一步展開[4].研究表明,Cl/Br-PAHs和二噁英、PAHs一樣能在環境中穩定持久存在,可被魚類和哺乳動物等吸收并在脂肪組織中累積[5],表現出與其母體PAHs相當甚至更高的致癌、致畸、致突變毒性,是一類新興高風險毒害有機污染物,對生態環境和人類健康存在潛在危害[6].

據文獻報道,目前對于Cl/Br-PAHs的研究主要集中在與多氯聯苯(PCBs)結構類似的多氯萘(PCNs)上[4,7-10],但對3環及以上的Cl/Br-PAHs研究卻十分有限,主要原因是該類污染物種類繁多,在環境中多為超痕量濃度水平,凈化分離難度大,且缺乏標準品,目前尚未有統一的分析方法.本文通過對Web of Science 核心合集數據庫中相關文獻的檢索,綜述了近年來環境/人體中Cl/Br-PAHs的污染來源、分析方法和污染特征的研究進展,對目前的研究現狀、存在的問題及研究數據缺口進行了梳理分析,并由此提出其今后的研究方向.

1 Cl/Br-PAHs的污染來源

1.1 汽車尾氣排放

汽車尾氣是城市環境中Cl/Br-PAHs的主要釋放源之一.據報道2016年日本城市空氣中有23%的Cl/Br-PAHs來源于道路交通排放,汽油中的二溴乙烷和二氯乙烯等是Cl/Br-PAHs形成的主要鹵源[11]. Ishaq等[12]發現含氯汽油使用的減少使得1996年斯德哥爾摩市公路隧道大氣Cl-PAHs濃度比1991年降低了10倍,由此認為含氯汽油會影響汽車尾氣中Cl-PAHs的形成.Wang等[13]在交通要道土樣中檢測出的Cl-PAHs濃度是農田表層土壤的40倍.此外,有研究者在高速公路附近的雪樣中也檢出了一定濃度的Cl/Br-PAHs[14].

1.2 有機物焚燒

固體廢棄物(如城市生活垃圾、電子垃圾等)以及化石燃料(如煤炭)的高溫處理或燃燒均可產生大量Cl/Br-PAHs[15-17].其形成機理包括母體PAHs的直接氯化和Cl-PAHs與其他前驅物的二次反應[18].前者一般有2種途徑(圖1):一是催化氯化,Cl2通過高溫下的親電氯化與PAHs反應或被充當路易斯酸的過渡金屬氯化物(如FeCl3、CuCl2等)催化(機制1);二是直接氯化,金屬氯化物作為氯化劑反應,通過構成極化的金屬氯化物分子或是構成有機金屬中間體來促進芳香族化合物的氯取代[24,28-29](機制2和3).固廢中常見的聚氯乙烯(PVC)、金屬氯化物、溴代阻燃劑(BFRs)等是Cl/Br-PAHs形成的氯/溴源[23-24].Fernando等[25]在PVC焚燒后的土壤樣品中檢測到高濃度的Cl-PAHs.PVC是電子產品的常用材料,電子垃圾焚燒區土壤、拆解車間灰塵及周邊土壤和植物中均已檢出高濃度的Cl- PAHs[17,27].Wang等[26]發現PVC在600~900℃范圍內燃燒時,Cl-PAHs的形成隨溫度升高而升高.固廢焚燒產生的Cl/Br-PAHs不僅殘留在焚燒殘渣內,還可隨飛灰和煙氣釋放到環境中[19].Kitazawa等[16]在城市垃圾焚燒爐煙道氣中檢測出相當高濃度的Cl-PAHs (<5.80~8780ng/m3),是環境大氣濃度的350~60000倍;受燃燒效率和條件的影響,不同類型焚燒爐產生的Cl/Br-PAHs濃度也存在顯著差異,其中固定爐(0.460~6990ng/g)遠高于爐排爐(<0.060~1.10ng/g)和回轉窯(<0.060~105ng/g)[20]. Li等[21]通過實驗室模擬研究發現Cl-PAHs在氣相中濃度較高,而Br-PAHs大多殘留在底灰和飛灰中,這與后者分子量較大較難揮發有關[22].相比于末端控制,焚燒過程中的源頭控制能更有效的降低Cl/Br-PAHs的污染排放,Qiao等[15]發現隨著清潔能源逐步取代燃煤發電取暖,北京市河流中Cl- PAHs的濃度顯著降低.

1.3 工業活動

金屬冶煉、氯化學工業等工業生產過程均可產生Cl/Br-PAHs.Xu等[30]發現鐵、鋁、鉛等冶金工業煙道氣中的Cl-PAHs和Br-PAHs濃度(68.3~156和2.90~13.5ng/Nm3)遠高于其周圍大氣中的濃度(7.00~554和3.00~126pg/m3),且兩者化合物組成相似.Jin等[31]在二次銅冶煉廠車間檢出了38種Cl/Br-PAHs,總濃度2.20~605pg/m3,高于周邊空氣濃度(2.50~92.3pg/m3).冶煉原材料、燃料、還原劑等是影響金屬冶煉過程中Cl/Br-PAHs生成釋放的重要因素,使用天然氣代替煤和重油作為燃料和還原劑可能有助于降低該過程中Cl/Br-PAHs的形成[30-31].

Pinto等[32]模擬了自來水的消毒過程,在含有PAHs和次氯酸鈉的超純水中檢測到一定濃度的Cl-PAHs.Koistinen等[33-34]在牛皮紙漂白廠和紙漿廠的污水、紙漿、生物底泥中均檢測出Cl-PAHs,以氯代芴(Cl-FLU)和Cl-PHE為主.圖2是水氯化消毒過程中苊(ACE)的主要氯化途徑[35].

圖1 燃燒過程中PAHs的3種氯化機制[24,28-29]

圖2 ACE在水的消毒過程中的氯化途徑[35]

除上述工業活動外,Ma等[17]發現焦化廠、PVC制造廠和氯堿廠等廠區表層土壤中的Cl-PAHs (88.0ng/g)比周邊農田表層土高2~3個數量級(ND~0.760ng/g).

1.4 光化學反應

PAHs的光化學作用也是Cl/Br-PAHs的重要來源.Sankoda等[36]以芘(PYR)模擬了海水中PAHs的紫外光照射過程,檢測到PYR的單氯、單溴、二氯和混合鹵代產物.Ohura等[37]觀察到PYR和苯丙(a)芘(BaP)與Cl2在紫外光或可見光照射下均可生成以1-Cl-PYR和6-Cl-BaP為主的Cl-PAHs,由此提出了PAHs在含Cl-的酸性溶液中的光氯化機制(1~7):

PAH → PAH*(光照)(1)

PAH* + O2→ PAH+·+ O2-(2)

O2-·+ O2-·+ 2H2O → H2O2+ 2OH-+ O2(3)

O2-·+ H2O2→ OH·+ OH-+ O2(4)

OH·+ Cl-→ HOCl-(5)

HOCl-·+ H+? Cl·+ H2O(6)

PAH + Cl·→ ClPAH(7)

pH值是水環境中Cl的光化學反應的重要影響因素,Cl-PAHs的光化學生成隨pH值降低而增加[37].此外,金屬氧化物的種類和形態、氯源、光照時間等也會影響光化學反應中Cl-PAHs的形成[38],例如二氧化鈦和二氧化硅能促進Cl-PYR的生成,而氧化鈣卻不能;在二氧化硅的硅酸酐形態中能檢測出2-Cl-PYR,而在石英和硅膠等形態中卻未檢測出[38].氯源、光照時間等也會影響光化學反應過程中Cl-PAHs的形成.二氧化鈦中Cl-PYR的生成量在0.5~1h達到峰值,此后隨輻射時間增加生成量逐漸降低[38].

2 Cl/Br-PAHs的污染特征

目前研究者已在大氣、水體、土壤以及各種生物體中檢出了Cl/Br-PAHs(表1),并對其環境行為和污染特征進行了初步研究.

2.1 大氣

Kamiya等[11]發現日本名古屋大氣懸浮顆粒物中24種Cl-PAHs濃度的空間分布規律為工業地區(20.7pg/m3)>居民區(14.1pg/m3),且Cl-PAHs主要源于受季節影響的本地源,而PAHs主要源于工業和石油燃料燃燒,二者的產生機制差異較大.Ohura等[39]報道日本12個地區大氣中的Cl-PAHs呈現出夏季氣相濃度較高,而冬季顆粒相濃度較高的季節變化規律,由此推測不同季節Cl-PAHs的來源可能存在差異,其夏季來源可能是廢棄物焚燒,而冬季來源可能是車輛尾氣排放和燃煤.Jin等[40]發現煤燃燒的增加使得供暖期間北京大氣中Cl/Br-PAHs的平均濃度比非供暖期間高3~9倍,這與Kakimoto等[41]的研究一致.此外,Kakimoto等[41]認為不同季節的光化學降解差異也會導致Cl/Br-PAHs濃度的季節性.以上研究中報道的Cl/Br-PAHs以BaP和PYR的單氯化衍生物為主,對高取代或混合取代的Cl/Br-PAHs報道很少.

大氣中的Cl/Br-PAHs主要存在于大氣顆粒物中并能保持相對穩定.Helm等[42]在北極地區大氣中檢測出一定含量的PCNs,證實了Cl/Br-PAHs具有較強的大氣遠距離遷移傳輸能力.

2.2 水體

大多數Cl/Br-PAHs水溶性很低,在水環境中主要賦存在懸浮顆粒物和沉積物上.Sun等[43]在深圳茂州河的表層沉積物中檢出了3種Cl-PAHs和6種Br-PAHs,分別以9-Cl-PHE(平均濃度16.5ng/g)和2-Br-FLU(平均濃度35.3ng/g)為主,且Br-PAHs總濃度是現有研究報道中最高值(平均濃度53.0ng/g),城市化和工業化進程是其主要來源. Ohura等[44]在亞洲3個受工業化影響區域的水體(中國黃海,斯里蘭卡的康提湖和尼甘布瀉湖)沉積物中檢測出Cl/Br-PAHs,以6-Cl-BaP、1-Cl- PYR、3-Cl-FLT等為主,在表層沉積物濃度較高,而PAHs則在底層沉積物濃度較高.作者認為影響兩者分布的主要因素是各自污染來源及遷移轉化過程(如光降解、生物降解等),某些Cl-PAHs同系物如6-Cl-BaP和1-Cl-PYR可作為其人為活動源的指示物[43].

Shiraishi等[2]在筑波地區自來水樣本中檢測出萘(NAP)、菲(PHE)、芴(FLU)和熒蒽(FLT)的一氯/二氯衍生物但在地表水中未檢測出,推測自來水中的Cl-PAHs主要來源于氯化消毒及管道傳輸過程.而Wang等[45]在河南洛陽某區的研究發現水樣中Cl-PAHs濃度表現為地表水(6.90~25.7ng/L)>自來水(0.900~25.7ng/L).這可能是由于城市化進程產生了Cl-PAHs的潛在排放源,如電子廢物回收、氯化學工業、汽車尾氣等,通過污水排放、地表徑流、地下水滲透等途徑向水體中釋放Cl-PAHs.海水中也存在著相當高濃度的Cl/Br-PAHs,這可能源于沿海地表水中PAHs暴露于太陽光發生鹵化作用[36].

表1 環境中Cl/Br-PAHs的污染特征比較

注:①1,2-Br2-ACY指1,2-二溴苊烯;②2-Br-TRIPH指2-溴三亞苯.

2.3 土壤

Ni等[46]發現土地利用方式可影響土壤中Cl/Br-PAHs的同系物組成和濃度水平,深圳地區8種不同土地利用方式土壤中3種Cl-PAHs的平均濃度依次為:交通區(2.16ng/g)>商業區(1.04ng/g)>農業區(0.330ng/g)>工業區(0.220ng/g)>居民區(0.080ng/g)>果園(0.070ng/g)>森林(0.060ng/g)>綠化區(0.020ng/g),表明汽車尾氣排放會影響土壤中的Cl-PAHs含量;而6種Br-PAHs的平均濃度在各土樣中均高于Cl-PAHs,且在農業區土壤中的濃度最高(18.1ng/g),說明其主要來源與Cl-PAHs不同.Ni等[46]在土壤樣品中檢出的9種Cl/Br-PAHs中以2-Br-FLU為主(平均濃度為7.18ng/g),卻在飛灰中檢出了除2-Br-FLU以外的8種Cl/Br-PAHs,表明飛灰與土壤中Cl/Br-PAHs的來源存在差異.Nguyen等[47]發現電子廢物露天焚燒可造成土壤Cl/Br- PAHs污染,且Cl-PAHs濃度比相應Br-PAHs高2.4~64倍,以三環單氯代物為主,其中1-Cl-PYR濃度最高;而Br-PAHs的組成和濃度水平隨燃燒材料類型和條件而變化.

2.4 生物體

盡管數據有限,Cl/Br-PAHs已在魚類、蔬菜等動植物樣品中被檢出,表現出生物可利用性和生物富集性.Tan等[48]在遼寧省的22個淡水魚樣品中檢測出3種低分子量的Cl-PAHs(9- Cl-PHE、1-Cl-PYR和5-Cl-ACE),但并未觀察到Cl-PAHs與母體PAHs的相關性,其中工業活動較強地區(如城市垃圾填埋、造紙廠)的魚樣中的Cl-PAHs濃度較高,而生產活動和燃燒源污染嚴重地區魚樣中PAHs濃度較高;所有魚樣中的Cl-PAHs以低分子量化合物為主,這可能與其生物可利用性較強有關[49]. Wang等[50]發現北京市場上的葉類和根類蔬菜中均可檢出11種Cl/Br-PAHs,但葉類蔬菜的總Cl/Br-PAHs濃度高于根類蔬菜,且隨著與焚燒廠距離的增加而顯著降低,說明其污染主要來自于焚燒污染排放的大氣沉降.

2.5 人體

目前對于人體樣品中Cl/Br-PAHs的污染特征研究極為有限,現有研究主要集中在Cl/Br-PAHs的人體暴露評價和致癌風險評估方面(表2).有限的研究表明:不考慮體重影響下,男性及成年人的暴露劑量更高,而如果考慮體重的影響,女性和兒童則處于更高的暴露風險中;食物性攝入是人體Cl/Br-PAHs的主要暴露途徑[46,51-52].

有研究者[53]認為,Cl/Br-PAHs傾向于在水生生態系統的食物鏈中被生物利用和放大,污染水產品(如海鮮等)的攝入是其人體暴露的主要途徑.除此之外,其它受污染食物(如肉類、大米、蔬菜等)的攝入也會增加其人體暴露風險[51].Ding等[51]通過計算不同年齡段人群每日通過不同食物對9種Cl/Br-PAHs的絕對攝入量(ADI,ng/d)發現,雖然Cl/Br-PAHs總濃度變化順序為豬肉(4.97ng/g)>大米(2.75ng/g)>蔬菜(0.560ng/g),但各食物對其ADI的貢獻則是大米(41.3%~58.7%)>豬肉(27.4%~43%)>蔬菜(6.5%~ 19.6%);成年和老年人的ADI值(男:1129~1253ng/d;女:998.1~1034ng/d)高于兒童(男:581.7ng/d;女: 577.4ng/d);但考慮到體重影響,兒童仍是最敏感暴露人群.

大氣顆粒物和土壤灰塵等非食物性攝入也會增加人體的Cl/Br-PAHs暴露風險,但暴露量遠低于食物性攝入[40,46,52].Ni等[46]發現同一年齡段女性通過土壤接觸對Cl/Br-PAHs的相對每日攝入量(RDI,pg/(kg·d))高于男性,且隨年齡增加而降低.Sun等[52]通過計算也發現除成年人外,其余所有年齡段女性通過大氣顆粒物PM10和PM2.5攝入Cl/Br-PAHs的RDI值均略高于男性.Jin等[40]比較了不同人群在供暖期和非供暖期通過呼吸和皮膚暴露攝入PAHs和Cl/Br-PAHs的ADI值,發現顆粒相呼吸攝入(33%~98.8%)>氣相呼吸攝入(0.5%~39.2%)>氣相皮膚暴露(0.2%~40.8%)>顆粒相皮膚暴露(0.004%~0.8%),其中供暖期間的呼吸攝入ADI值比非供暖期間高10倍以上,且ADI值整體表現為成年人>青少年>兒童,顆粒相呼吸攝入被認為是PAHs及Cl/Br-PAHs在霧霾天的主要暴露途徑.

對于致癌物質,美國環保局將10-6幾率致癌風險值設為可接受致癌風險水平下限,而10-4幾率設為可接受致癌風險水平上限[54].Wang等[50]發現所有年齡段人群經蔬菜攝入Cl/Br-PAHs所引發的終生致癌風險(ILCR)值均<10-6,即其癌癥風險很小.Ding等[51]報道了深圳地區男性和女性通過飲食攝入(豬肉、大米、蔬菜)8種Cl/Br-PAHs的ILCR值分別為1.20×10-5和1.10×10-5,處于10-6和10-4之間.這一差異可能與各自研究區域、檢測Cl/Br-PAHs種類及濃度不同有關.Sun等[52]的研究則表明,雖然不同年齡段人群經PM10和PM2.5呼吸攝入9種Cl/Br-PAHs所引發的ILCR值有所不同,但所有ILCR值都比10-6低2~3個數量級.總的來說,食物性和非食物性攝入Cl/Br-PAHs均存在一定的致癌風險,但目前已有的數據大多低于可接受致癌風險水平上限(10-4).需要注意的是,因為上述評價涵蓋的目標物種類均十分有限,Cl/Br-PAHs的實際癌癥風險可能要高于上述評估值.

表2 人體Cl/Br-PAHs暴露量及致癌風險評估

3 Cl/Br-PAHs的分析方法

3.1 樣品提取

樣品提取是準確分析環境樣品中Cl/Br-PAHs的關鍵步驟,最傳統的方法是液液萃取(LLE)和索氏抽提(SE),廣泛應用于水體、大氣、土壤等樣品中Cl/Br-PAHs的提取[2,55-57].近年來,隨著樣品前處理技術的飛速發展,一些新型儀器輔助提取方法被不斷推出并應用于環境樣品中Cl/Br-PAHs的提取和分析,例如:利用固體吸附及選擇性吸附液態樣品中目標物的固相萃取法(SPE)[45,58-59];采用涂有固定相的熔融石英纖維來吸附、富集樣品中的待測物質的固相微萃取法(SPME)[60];利用超聲波輻射加速提取目標物的超聲波萃取法(UE)[41,61-62];利用加溫加壓加速提取目標物的加速溶劑萃取法(ASE)[25,30,48];利用微波加熱加速溶劑提取的微波輔助萃取法(MAE)[63-65]等.上述提取方法的優缺點見表3.總的來說,SPE、ASE、UE等新型樣品提取技術有機溶劑消耗量低,提取時間短,效率高,容易實現自動化操作,或與分析檢測儀器在線聯用,大大節省人力物力,未來會在Cl/Br-PAHs的環境/人體樣品分析中發揮重要作用.

除上述常見提取方法外還有超臨界流體萃取法(SFE),該方法利用超臨界流體(如CO2)良好的溶解能力和高擴散性達到萃取分離目的,目前已應用于土壤[66-67]、沉積物[68]、大氣[69]等基質中PAHs及其衍生物的提取分析,為Cl/Br-PAHs的提取技術提供新方向.

3.2 樣品凈化

柱層析法是有機污染物分析最常用的樣品凈化分離手段.目前Cl/Br-PAHs樣品凈化常用的柱填料有硅膠、活性炭、氧化鋁、弗羅里硅土、凝膠滲透色譜柱填料(GPC)、銅粉/粒(除硫)等[70].這些填料既可單獨使用,也可組合以更好的去除樣品的基質干擾;既可自行組裝,也有不同容量的商品化小柱可以選用.

表3 Cl/Br-PAHs的主要提取方法的比較

3.2.1 單填料固相凈化柱 硅膠通過表面硅醇基產生吸附作用,適于分離極性相差較大的物質,還可與酸堿混合配置成酸性或堿性硅膠,用于不同酸堿性干擾物質的去除,是有機物分析中最常用的凈化柱填料[71-72].但Jin等[73]考察了不同質量負載(11%、22%、44%,:)下酸性硅膠對Cl/Br- PAHs樣品的凈化效果,發現即使是最低負載(11%)的酸性硅膠也會完全破壞Cl/Br-PAHs的結構,該研究最終采用中性硅膠對樣品進行凈化,并用60mL正己烷:二氯甲烷=4:1(:)洗脫,得到了很好的凈化效果(加標回收率為77%~106%).堿性硅膠也常用于鹵代二噁英樣品的凈化過程[74]. Masuda等[75]采用12g 2% KOH堿性硅膠柱并結合活性炭小柱,成功將魚皮樣品中的脂質及其堿反應產物與Cl-PAHs分離,凈化后目標物回收率為57%~105%.氧化鋁對非平面極性分子有較強吸附力,而活性炭可吸附共平面非/弱極性化合物,因此二者適用于分離平面型和非平面型化合物.Fernando等[25]采用活性氧化鋁柱凈化土壤樣品提取液,100mL正己烷淋洗去除樣品中的脂肪族化合物,然后以200mL二氯甲烷洗脫其中的Cl/Br- PAHs.莫李桂等[76]采用100mL正己烷:二氯甲烷=7:3 (:)淋洗雙層碳可逆管以去除脂肪類碳氫化合物及非共平面PCBs等干擾物,然后用100mL甲苯反沖柱獲得Cl/Br-PAHs,加標回收率62%~95%.GPC填料依靠空間排阻效應,將分子體積較大的干擾物質(如脂肪類)從樣品中去除.原文婷等[77]以乙酸乙酯:環己烷=1:1(:)做GPC柱洗脫液,6種Cl-PAHs檢測限2.60~25.1pg/g.

3.2.2 復合固相凈化柱 對于基質復雜的樣品,使用單填料凈化柱難以達到理想的凈化分離效果,通常采用兩種及以上的凈化填料復合的方式,如硅膠與氧化鋁、活性炭或GPC等組合,達到進一步凈化樣品提取液的目的.Qiao等[78]采用硅膠-氧化鋁復合柱凈化分析北京某河流水樣,不同配比有機溶劑洗脫,目標物回收率在69%~103%之間.多段硅膠柱也是一種常見的復合凈化柱,將酸性硅膠、中性硅膠、堿性硅膠等按照不同的質量、排列順序進行組合, 對基質中極性較高(如脂肪等)和易氧化物質有很好的去除效果[72],被用于沉積物和生物樣品中PCNs的凈化分析[79].但如前所述[73],酸性硅膠可能會破壞PAHs及其氯代衍生物的結構,導致目標物回收率降低.

3.3 儀器分析

Cl/Br-PAHs的結構和物化性質與PAHs及二噁英等有機物相似,其儀器分析方法的建立主要參考上述有機物,以氣相色譜-質譜聯用(GC-MS)為主.此外,高分辨氣相色譜-高分辨質譜(HRGC- HRMS)、全二維氣相色譜-質譜(GC×GC-MS)、氣相色譜-串聯質譜(GC-MS/MS)等也在Cl/Br-PAHs分析中發揮了很大作用,對Cl/Br-PAHs的檢測限可達pg級甚至更低.目前已報道的Cl/Br-PAHs主要儀器分析方法見表4.

3.3.1 GC-MS GC-MS主要采用電子電離源(EI)和四級桿(Q)質量分析器,最早被用于水體樣品中的Cl/Br-PAHs分析[10],后來也被用于大氣樣品分析,定性定量效果良好[39].近年來隨著MS技術的飛速發展,軌道離子阱(Orbitrap)、傅里葉變換離子回旋共振分析器(FT-ICR)等高分辨率質量分析器也被用于Cl/Br-PAHs的分析.GC-EI-Orbitrap/MS可檢測ppb級的有機污染物,Yang等[80]應用GC-EI-Orbitrap/ MS對不同熱處理工業過程中產生的飛灰進行分析,共鑒定出包含Cl/Br-PAHs在內的96種有機化合物.FT-ICR/MS是在回旋共振分析器的基礎上發展而來,具有更快的掃描速率和更高的靈敏度. Fernando等[25]借助FT-ICR在火災過后的土壤樣品中鑒定出包含Cl/Br-PAHs在內的約150個化合物分子式.但FT-ICR/MS價格昂貴,體積大,分析速度較慢,成本高,在實際樣品分析中應用較少.

3.3.2 HRGC-HRMS HRGC-HRMS在準確分析環境基質中具有復雜同類異構體且超痕量的有機物方面具有壓倒性優勢.Jin等[31,73]在高分辨率(>10000)和選擇離子監測(SIM)模式下,采用HRGC-HRMS分析了二次銅冶煉廠煙道氣及周邊空氣樣品中的Cl/Br-PAHs.Fan等[81]采用HRGC- HRMS法分析不同工業熱處理飛灰中的Cl/Br- PAHs,均取得了良好效果,其中低氯代PAHs的檢測限為3.50~9.50pg/g.

3.3.3 GC×GC-MS 全二維GC(GC×GC)將2個涂層存在差異、分離機理不同且相互獨立的色譜柱以串聯方式結合,極大提高了分離度和峰容量.Xu等[35]借助GC×GC-Q/MS對Cl/Br-PAHs的定性分析發現ACE和PYR是 Cl-PAHs的主要前體,ACY和ANT則主要產生毒性較小的氧化PAHs.GC×GC若與高分辨率的飛行時間質譜(TOF)聯用則同時具有高通量、高靈敏度、高分析速率等優勢,適于復雜樣品的分離鑒定和全譜分析.Manzano等[82]采用GC×GC- TOF/MS分析大氣顆粒物、土壤和沉積物等樣品中的PAHs和Cl-PAHs,顯著降低了分析時間.Ieda等[83]首次通過GC×GC-TOF/MS分析法,在土壤提取物中檢測出了高氯(37)Cl-PAHs和混合鹵素取代的PAHs.盡管GC×GC-TOF/MS對高氯/溴取代PAHs具有明顯的分析優勢,但其高昂的成本和分析費用使其應用受到限制.

3.3.4 GC-MS/MS 多級MS串聯所具有的多反應監測模式(MRM)可對一維MS無法區分的干擾離子進一步確認,有效排除雜質干擾.莫李桂等[76]借助GC-QQQ-MS/MS 對土壤樣品中的19種Cl-PAHs和8種Br-PAHs進行分析,目標物的儀器檢測限分別為0.400~5.00pg和0.600~3.60pg.GC-QQQ-MS/ MS的檢測限和靈敏度與高分辨質譜相當,但硬件相對便宜,分析成本低,具有較好的應用前景.

3.3.5 其他儀器分析方法 Wang等[84]首次嘗試采用高效液相色譜 (HPLC)和熒光檢測器分析自來水中的6種Cl-PAHs和15種PAHs,目標物檢測限0.30~5.00ng/L.也有研究人員將LC-MS應用于水體[85]、土壤[86]、人體組織[87]中PCNs的檢測,回收率和檢測限均能滿足檢測要求.但LC-MS常用的離子源如電噴霧電離源(ESI)、大氣壓化學電離源(APCI)等對Cl/Br-PAHs的電離效率低,基質效應高,因而在Cl/Br-PAHs的分析中應用較少.Gao等[88]借助LC- MS設計了一種鑒定未知PAHs的方法,利用Cl- PAHs在質譜中的同位素分布識別未知PAHs的分子組成和碳骨架,很好的表征了NAP、ANT、PHE、PYR和FLT等PAHs類污染物,靈敏度達1.00ng/mL.

表4 Cl/Br-PAHs的主要儀器分析方法的比較

4 結語

4.1 總結

Cl/Br-PAHs來源和種類繁多,并在環境中表現出普遍存在性、持久性、長距離遷移性、生物富集性和毒性.目前受分析方法和標準品限制,國內外對其污染特征、環境行為歸趨和風險的研究尚未全面展開,整體處于起步階段,存在以下問題:

4.1.1 缺乏統一完善的分析方法體系和商業可獲得標準品;目前的靶向分析方法能夠分析的Cl/Br- PAHs極為有限,如何分析/表征復雜樣品中的多種Cl/Br-PAHs對于環境分析化學家是極大的挑戰.

4.1.2 環境/人體中Cl/Br-PAHs的污染數據十分有限,對其在環境中的遷移轉化行為、歸趨和風險尚不清楚.

4.1.3 對于Cl/Br-PAHs的生成機理、與母體PAHs的關系、影響因素及不同污染排放源的組成指紋特征研究極為有限.

4.1.4 目前的研究主要集中在1~3個Cl/Br單獨或混合取代的PAHs上,對于高鹵代PAHs污染特征和環境行為的研究有待展開.

4.2 研究展望

作為一類新興鹵代芳烴類毒害有機污染物,Cl/ Br-PAHs的污染和風險已引起國內外研究學者的廣泛關注,可以預見,隨著研究方法和技術手段的不斷發展進步,關于Cl/Br-PAHs的污染及其生態和健康風險研究將會全面展開.結合Cl/Br-PAHs目前的研究現狀和存在的問題,今后應在以下方面開展相關研究:

4.2.1 復雜樣品中多種Cl/Br-PAHs的分析/表征方法,如高分辨質譜非靶向篩查分析法、生物毒性表征法等.

4.2.2 不同污染來源Cl/Br-PAHs的生成機理、關鍵控制因素、污染物組成特征指紋譜,不同環境介質中的Cl/Br-PAHs污染來源的判識和追溯,同時提出其污染的源頭控制建議.

4.2.3 深入探討Cl/Br-PAHs在各類環境介質及生物體/人體間的遷移轉化規律和潛在生態健康風險.

[1] Ohura T, Amagai T, Makino M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane [J]. Chemosphere, 2008,70(11):2110- 2117.

[2] Shiraishi H, Pilknington N H, Otsuki A, et al. Occurrence of chlorinated polynuclear aromatic-hydrocarbons in tap water [J]. Environmental Science & Technology, 1985,19(7):585-590.

[3] BrinkmanU A T, ekok A, Reymer H G M, et al. Analysis of polychlorinated naphthalenes by high- performance liquid and thin -layer chromatography [J]. Journal of Chromatography, 1976,129(22): 193-209.

[4] Liu Z, Liu G, Zheng M, et al. Progress in the studies associated with environmental distribution and characterization of polychlorinated naphthalenes [J]. Scientia Sinica Chimica, 2013,43(3):279-290.

[5] Gao Z, Yang X, Peng Y. Analytical methods and pollution status of a new class of organic contaminants-chlorinated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2016,35(2):287-296.

[6] Loftroth G, Nilsson L, Agurell E, et al. almonella microsome mutagenicity of monochloro derivatives of some di-tetracyclic, tri-tetracyclic and tetracyclic aromatic-hydrocarbons [J]. Mutation Research, 1985,155(3):91-94.

[7] Mahmood A, Malik R N, Li J, et al. Congener specific analysis, spatial distribution and screening-level risk assessment of polychlorinated naphthalenes in water and sediments from two tributaries of the River Chenab, Pakistan [J]. Science of the Total Environment, 2014,485: 693-700.

[8] Falandyse J. Polychlorinated naphthalenes: an environmental update [J]. Environmental Pollution, 1998,101(1):77-90.

[9] Kannan K, Hilscherova K, magawa T, et al. Polychlorinated naphthalenes, -biphenyls, -dibenzo-p-dioxins, and -dibenzofurans in double-crested cormorants and herring gulls from Michigan waters of the Great Lakes [J]. Environmental Science & Technology, 2001,35(3): 441-447.

[10] Kucklick J R, Helm P A. Advances in the environmental analysis of polychlorinated naphthalenes and toxaphene [J]. Analytical and Bioanalytical Chemistry, 2006,386(4):819-836.

[11] Kamiya Y, Iijima A, Ikemori F, et al. Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity [J]. Scientific Reports, 2016,6:38358.

[12] Ishaq R, Naf C, Zebuhr Y, et al. PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples-patterns and variations [J]. Chemosphere, 2003,50(9):1131-1150.

[13] Wang X L, Wu J F, Liu B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. Rsc Advances, 2016,6(83):80017-80023.

[14] Haglund P, Alsberg T, Bergman A, et al. Analysis of halogenated polycyclic aromatic-hydrocarbons in urban air, snow and automobile exhaust [J]. Chemosphere, 1987,16(10-12):2441-2450.

[15] Qiao M, Bai Y H, Cao W, et al. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives [J]. Chemosphere, 2018,211:185-191.

[16] Kitazawa A, Amagai T, Ohura T. Temporal trends and relationships of particulate chlorinated polycyclic aromatic hydrocarbons and their parent compounds in urban air [J]. Environmental Science & Technology, 2006,40(15):4592-4598.

[17] Ma J, Horii Y, Cheng J, et al. Chlorinated and Parent Polycyclic Aromatic Hydrocarbons in Environmental Samples from an Electronic Waste Recycling Facility and a Chemical Industrial Complex in China [J]. Environmental Science & Technology, 2009,43(3):643-649.

[18] Takasuga T, Umetsu N, Makino T, et al. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper [J]. Archives of Environmental Contamination and Toxicology, 2007,53(1):8-21.

[19] Fujima S, Ohura T, Amagai T. Simultaneous determination of gaseous and particulate chlorinated polycyclic aromatic hydrocarbons in emissions from the scorching of polyvinylidene chloride film [J]. Chemosphere, 2006,65(11):1983-1989.

[20] Horii Y, Ok G, Ohura T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008,42(6): 1904-1909.

[21] Li H Y, Gao P P, Ni H G. Emission characteristics of parent and halogenated PAHs in simulated municipal solid waste incineration [J]. Science of the Total Environment, 2019,665:11-17.

[22] Lei Y D, Chankal R, Chan A, et al. Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons [J]. Journal of Chemical and Engineering Data, 2002,47(4):801-806.

[23] Huang K, Guo J, Lin K F, et al. Distribution and temporal trend of polybrominated diphenyl ethers in one Shanghai municipal landfill, China [J]. Environmental Science and Pollution Research, 2013,20(8): 5299-5308.

[24] Wang D, Zhang H J, Fan Y, et al. Electrophilic Chlorination of Naphthalene in Combustion Flue Gas [J]. Environmental Science & Technology, 2019,53(10):5741-5749.

[25] Fernando S, Jobst K J, Taguchi V Y, et al. Identification of the Halogenated Compounds Resulting from the 1997 Plastimet Inc. Fire in Hamilton, Ontario, using Comprehensive Two-Dimensional Gas Chromatography and (Ultra) High Resolution Mass Spectrometry [J]. Environmental Science & Technology, 2014,48(18):10656-10663.

[26] Wang D L, Xu X B, Chu S G, et al. Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride [J]. Chemosphere, 2003,53(5):495- 503.

[27] Mukai, Fujimori T, Shiota K, et al. Quantitative speciation of insoluble chlorine in E-waste open burning soil: Implications of the presence of unidentified aromatic-Cl and insoluble chlorides [J]. Chemosphere, 2019,233:493-502.

[28] Weber P, Dinjus E, Stieglitz L. The role of copper(II) chloride in the formation of organic chlorine in fly ash [J]. Chemosphere, 2001,42 (5-7):579-582.

[29] Ryu J Y. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process [J]. Chemosphere, 2008,71(6):1100-1109.

[30] Xu Y, Yang L L, Zheng M H, et al. Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons from Metallurgical Plants [J]. Environmental Science & Technology, 2018,52(13):7334-7342.

[31] Jin R, Liu G, Zheng M, et al. Secondary Copper Smelters as Sources of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons [J]. Environmental Science & Technology, 2017,51(14):7945-7953.

[32] Pinto M, Rebola M, Louro H, et al. Chlorinated Polycyclic Aromatic Hydrocarbons Associated with Drinking Water Disinfection: Synthesis, Formation under Aqueous Chlorination Conditions and Genotoxic Effects [J]. Polycyclic Aromatic Compounds, 2014,34(4):356-371.

[33] Koistinen J, Paasivirta J, Nevalainen T, et al. Chlorophenanthrenes, alkylchlorophenanthrenes and alkylchloronaphthalenes in kraft pulp-mill products and discharges [J]. Chemosphere, 1994,28(7): 1261-1277.

[34] Koistinen J, Paasivirta J, Nevalainen T, et al. Chlorinated Fluorenes and Alkylfluorenes in Bleached Kraft Pulp and Pulp-Mill Discharges [J]. Chemosphere, 1994,28(12):2139-2150.

[35] Xu X, Xiao R Y, Dionysiou D D, et al. Kinetics and mechanisms of the formation of chlorinated and oxygenated polycyclic aromatic hydrocarbons during chlorination [J]. Chemical Engineering Journal, 2018,351:248-257.

[36] Sankoda K, Toda I, Sekiguchi K, et al. Aqueous secondary formation of brominated, chlorinated, and mixed halogenated pyrene in presence of halide ions [J]. Chemosphere, 2017,171:399-404.

[37] Ohura T, Miwa M. Photochlorination of Polycyclic Aromatic Hydrocarbons in Acidic Brine Solution [J]. Bulletin of Environmental Contamination and Toxicology, 2016,96(4):524-529.

[38] Sugiyama H, Katagiri Y, Kaneko M, et al. Chlorination of pyrene in soil components with sodium chloride under xenon irradiation [J]. Chemosphere, 1999,38(8):1937-1945.

[39] Ohura T, Suhara T, Kamiya Y, et al. Distributions and multiple sources of chlorinated polycyclic aromatic hydrocarbons in the air over Japan [J]. Science of the Total Environment, 2019,649:364-371.

[40] Jin R, Liu G, Jiang X, et al. Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere [J]. Science of the Total Environment, 2017,593:390-398.

[41] Kakimoto K, Nagayoshi H, Konishi Y, et al. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia [J]. Chemosphere, 2014,111:40-46.

[42] Helm P A, Bidleman T F, Li H H, et al. Seasonal and spatial variation of polychlorinated naphthalenes and non-/mono-ortho-substituted polychlorinated biphenyls in arctic air [J]. Environmental Science & Technology, 2004,38(21):5514-5521.

[43] Sun J L, Ni H G, Zeng H. Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization [J]. Journal of Environmental Monitoring, 2011,13(10):2775-2781.

[44] Ohura T, Sakakibara H, Watanabe I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia [J]. Environmental Pollution, 2015,196:331-340.

[45] Wang X, Kang H, Wu J. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry [J]. Journal of Separation Science, 2016,39(9):1742-1748.

[46] Ni H G, Zeng E Y. Environmental and human exposure to soil chlorinated and brominated polycyclic aromatic hydrocarbons in an urbanized region [J]. Environmental Toxicology and Chemistry, 2012,31(7):1494-1500.

[47] Nguyen Minh T, Goto A, Takahashi S, et al. Soil contamination by halogenated polycyclic aromatic hydrocarbons from open burning of e-waste in Agbogbloshie (Accra, Ghana) [J]. Journal of Material Cycles and Waste Management, 2017,19(4):1324-1332.

[48] Tan J, Lu X, Fu L, et al. Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS [J]. Ecotoxicology and Environmental Safety, 2019, 186:109775.

[49] Sun J L, Zeng H, Ni H G. Halogenated polycyclic aromatic hydrocarbons in the environment [J]. Chemosphere, 2013,90(6):1751- 1759.

[50] Wang L, Li C, Jiao B, et al. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments [J]. Science of the Total Environment, 2018, 616:288-295.

[51] Ding C, Ni H G, Zeng H. Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China [J]. Science of the Total Environment, 2013,443:857-863.

[52] Sun J L, Jing X, Chang W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015,113:31-37.

[53] Ni H G, Guo J Y. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in Seafood from South China and Implications for Human Exposure [J]. Journal of Agricultural and Food Chemistry, 2013,61(8):2013-2018.

[54] Bostrom C E, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environmental Health Perspectives, 2002,110:451- 488.

[55] Li G, Guo F, Rao Z, et al. Simultaneous determination of sixteen polycyclic aromatic hydrocarbons and four derivatives in groundwater by ultra-high performance liquid chromatography [J]. Environmental Chemistry, 2017,36(6):1295-1303.

[56] Jin R, Yang L L, Zheng M H, et al. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes [J]. Environmental Pollution, 2018,242:1346-1352.

[57] Nishimura C, Horii Y, Tanaka S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017,225:252-260.

[58] Liu Q, Xu X, Wang L, et al. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water [J]. Ecotoxicology and Environmental Safety, 2019,181:241-247.

[59] 王 麗,金 芬,李敏潔,等.分散固相萃取-氣相色譜-串聯質譜法測定蔬菜中多環芳烴及鹵代多環芳烴 [J]. 分析化學, 2013,41(6): 869-875. Wang L, Jin F, Li M J, et al. Determination of Polycyclic Aromatic Hydrocarbons and Halogenated Polycyclic Aromatic Hydrocarbons in Vegetable by Gas Chromatography-Tandem Mass Spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013,41(6):869-875.

[60] Tillner J, Hollard C, Bach C, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorination by-products in drinking water and the coatings of water pipes by automated solid-phase microextraction followed by gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2013,1315:36-46.

[61] Sankoda K, Kuribayashi T, Nomiyama K, et al. Occurrence and Source of Chlorinated Polycyclic Aromatic Hydrocarbons (CI-PAHs) in Tidal Flats of the Ariake Bay, Japan [J]. Environmental Science & Technology, 2013,47(13):7037-7044.

[62] Sun P, Weavers L K, Taerakul P, et al. Characterization of polycyclic aromatic hydrocarbons (PAHs) on lime spray dryer (LSD) ash using different extraction methods [J]. Chemosphere, 2006,62(2):265-274.

[63] Yusa V, Pardo O, Pastor A, et al. Optimization of a microwave- assisted extraction large-volume injection and gas chromatography- ion trap mass spectrometry procedure for the determination of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated naphthalenes in sediments [J]. Analytica Chimica Acta, 2006,557(1/2):304-313.

[64] 李 丹,周明輝,劉瑩峰,等.微波萃取/GC-MS法對電子電氣產品中多氯萘的測定 [J]. 分析測試學報, 2010,29(1):43-45,50. Li D, Zhou M H, Liu Y F, et al. Determination of polychlorinated naphthalenes in electrical and electronic products by microwave extraction and GC-MS method [J]. Journal of Instrumental Analysis, 2010,29(1):43-45,50.

[65] 劉春娟.微波萃取技術應用及其研究進展 [J]. 廣東化工, 2008,3: 53-55,58. Liu C J. The application and research development of microwave assisted extraction [J]. Guangdong Chemical Industry. 2008,3:53- 55,58.

[66] Han Y, Ren L, Xu K, et al. Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives [J]. Journal of Chromatography A, 2015,1395:1-6.

[67] Wiater-Protas I, Van B B, Parczewski A. Rapid extraction and clean-up of PCNs and PCDFs from soil samples using SFE-LC with solid phase carbon trap. Comparison with other methods [J]. Chemia Analityczna, 2002,47(5):659-667.

[68] Librando V, Hutzinger O, Tringali G, et al. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from marine sediments and soil samples [J]. Chemosphere, 2004,54(8):1189-1197.

[69] Shimmo M, Anttila P, Hartonen K, et al. Identification of organic compounds in atmospheric aerosol particles by on-line supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2004,1022(1/2): 151-159.

[70] Gevao B, Harner T, Jones K C. Sedimentary record of polychlorinated naphthalene concentrations and deposition fluxes in a dated Lake Core [J]. Environmental Science & Technology, 2000,34(1):33-38.

[71] Vandermarken T, Gao Y, Baeyens W, et al. Dioxins, furans and dioxin-like PCBs in sediment samples and suspended particulate matter from the Scheldt estuary and the North Sea Coast: Comparison of CALUX concentration levels in historical and recent samples [J]. Science of the Total Environment, 2018,626:109-116.

[72] Li H R, Zhou L, Ren M, et al. Levels, profiles and gas-particle distribution of atmospheric PCDD/Fs in vehicle parking lots of a South China metropolitan area [J]. Chemosphere, 2014,94:128-134.

[73] Jin R, Liu G, Zheng M, et al. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method [J]. Journal of Chromatography A, 2017,1509:114-122.

[74] Subedi B, Aguilar L, Robinson E M, et al. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern [J]. Trac-Trends in Analytical Chemistry, 2015,68:119-132.

[75] Masuda M, Wang Q, Tokumura M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019,178:188-194.

[76] 莫李桂,馬盛韜,李會茹,等.氣相色譜/三重四極桿串聯質譜法檢測土壤中氯代多環芳烴和溴代多環芳烴 [J]. 分析化學, 2013,41(12): 1825-1830. Mo L G, Ma S T, Li H R, et al. Determination of chlorinated- and brominated- polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013,41(12):1825-1830.

[77] 原文婷,高占啟,孫 成.土壤中6種氯代多環芳烴測定方法的建立及應用 [J]. 環境監控與預警, 2015,7(6):13-17,37. Yuan W T, Gao Z Q, Sun C. Method development and application for the determination of chlorinated polycyclic aromatic hydrocarbons in soil [J]. Environmental Monitoring and Forewarning, 2015,7(6):13- 17,37.

[78] Qiao M, Cao W, Liu B C, et al. Simultaneous detection of chlorinated polycyclic aromatic hydrocarbons with polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2017,9(13):3465-3473.

[79] Falandysz J, Strandberg L, Bergqvist P A, et al. Polychlorinated naphthalenes in sediment and biota from the Gdansk Basin, Baltic Sea [J]. Environmental Science & Technology, 1996,30(11):3266-3274.

[80] Yang L, Wang S, Peng X, et al. Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants [J]. Science of the Total Environment, 2019,664:107-115.

[81] Fan Y, Zhang H, Wang D, et al. Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes [J]. Analytical Methods, 2017,9(35): 5198-5203.

[82] Manzano C, Hoh E, Simonich S L M. Improved separation of complex polycyclic aromatic hydrocarbon mixtures using novel column combinations in GCxGC/ToF-MS [J]. Environmental Science & Technology, 2012,46(14):7677-7684.

[83] Ieda T, Ochiai N, Miyawaki T, et al. Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry [J]. Journal of Chromatography A, 2011,1218(21):3224-3232.

[84] Wang J, Fan Y, Lu X, et al. Solid-phase extraction combined with HPLC for the determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in tap water samples [J]. Environmental Chemistry, 2018,37(9):1987-1993.

[85] Moukas A I, Thomaidis N S, Calokerinos A C. Novel determination of polychlorinated naphthalenes in water by liquid chromatography-mass spectrometry with atmospheric pressure photoionization [J]. Analytical and Bioanalytical Chemistry, 2016,408(1):191-201.

[86] Teng M, Jin J, Fu Q, et al. Selective separation of polychlorinated naphthalene (PCNs), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in soil matrices [J]. Chinese Science Bulletin, 2013,58(4/5):500-506.

[87] Chen Z, Xie H, Liu J, et al. Simultaneous quantification of phencynonate and its active metabolite N-demethyl phencynonate in human plasma using liquid chromatography and isotope-dilution mass spectrometry [J]. Drug Testing and Analysis, 2015,7(9):843-847.

[88] Gao Z Y, Jiang W S, Sun D, et al. Chlorination for efficient identification of polycyclic aromatic hydrocarbons by liquid chromatography-mass spectrometry [J]. Talanta, 2010,81(1/2):48-54.

致謝:感謝評審專家和責任編輯對本文的細致點評和寶貴建議,同時感謝華南師范大學環境學院陳長二教授在本文英文修改上提供的熱心幫助和支持!

A review of chlorinated/brominated polycyclic aromatic hydrocarbons in the environment and human: Sources, analysis methods and pollution characteristics.

LIU Ming-yang1,4, LI Hui-ru2,3, SONG Ai-min1,4, HU Jian-fang1, SHENG Guo-ying1, PENG Ping-an1,4*

(1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2.SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China;3.School of Environment, South China Normal University, Guangzhou 510006, China;4.University of Chinese Academy of Sciences, Beijing 100049, China)., 2021,41(4):1842~1855

Chlorinated/brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) were a class of emerging persistent toxic contaminants that demonstrating similar chemical structures and carcinogenicities with dioxins and PAHs. Their behaviors, fates, and potential risks in environments were of great concern. This study retrieved the Web of Science Database with the topics including "Cl-PAH*" OR"Br-PAH*" OR"H-PAH*" OR"chlorinated PAH*" OR"brominated PAH*" OR"halogenated PAHs" OR"chlorinated polycyclic aromatic hydrocarbon*"OR"brominated polycyclic aromatic hydrocarbon*"OR"halogenated polycyclic aromatic hydrocarbon*", and reviewed the research progress of the sources, pollution characteristics and analysis methods of Cl/Br-PAHs focusing on the environmental matrix and human beings. The results showed that 225 papers in total within this topic were published by Jan. 2021. The existing findings showed that: Cl/Br-PAHs were mainly generated from thermal processes such as waste incineration, vehicle exhaust, metal smelting, electronic waste recycling, etc., as well as some photochemical processes; So far, Cl/Br-PAHs were found ubiquitous in various environments worldwide, and demonstrated persistence, long-distance transportability and bioavailability; It was documented that Cl/Br-PAHs had similar or stronger toxicity compared to their parent PAHs. However, their formation mechanisms and environmental behaviors were still unclear; An effective and precise analytical method was still unavailable, leading to very limited reports on Cl/Br-PAH compounds in environments and the overall research area on this topic was still in its infant stage. Based on the current research status and knowledge gaps of Cl/Br-PAHs, more attention should be paid to their high-throughput and precise analytical methods, emission fingerprints, environmental behaviors, and potential risks in the future.

chlorinated/brominated polycyclic aromatic hydrocarbons;aromatic receptor effect;gas chromatograph-mass spectrometer

X592

A

1009-6923(2021)04-1842-14

劉明洋(1996-),男,河南信陽人,中國科學院廣州地化所碩士研究生,主要從事環境有機污染物方面的研究.

2020-08-16

廣州市科技計劃項目(201707020028);廣東省自然科學基金資助項目(2018A030313904);廣東省科技項目(2017B030314057)

* 責任作者, 研究員, pinganp@gig.ac.cn

猜你喜歡
污染環境檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
長期鍛煉創造體內抑癌環境
一種用于自主學習的虛擬仿真環境
孕期遠離容易致畸的環境
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
環境
堅決打好污染防治攻堅戰
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 成人自拍视频在线观看| 91福利在线观看视频| 国产日韩欧美在线视频免费观看| 亚洲综合九九| 香蕉综合在线视频91| 亚洲天堂网在线视频| 国产自产视频一区二区三区| 亚洲国模精品一区| 欧美啪啪网| 老熟妇喷水一区二区三区| 高清国产在线| 精品亚洲麻豆1区2区3区| 毛片手机在线看| 一级毛片在线播放免费观看| 欧美区一区二区三| 97影院午夜在线观看视频| 成人一级黄色毛片| 国产精品久久自在自2021| 国产好痛疼轻点好爽的视频| 国产成人一区在线播放| 无码高潮喷水专区久久| 欧美特黄一级大黄录像| 亚洲小视频网站| 亚洲人成色77777在线观看| 国产一区二区三区在线精品专区| 国产福利在线观看精品| 欧美69视频在线| 国产91小视频| 日韩欧美国产三级| 亚洲国产欧美目韩成人综合| 欧美在线一级片| 国产精品第一区在线观看| 极品私人尤物在线精品首页| 亚洲天堂在线视频| 国产黄网永久免费| 波多野结衣亚洲一区| 中国一级特黄视频| 成人国内精品久久久久影院| 亚洲欧洲自拍拍偷午夜色| 国产极品粉嫩小泬免费看| 久久大香香蕉国产免费网站| 无码国内精品人妻少妇蜜桃视频| 亚洲性视频网站| 国产在线视频导航| 国产一级裸网站| 青青热久免费精品视频6| 国产va免费精品观看| 无码精品福利一区二区三区| 欧美中文字幕在线二区| 国产美女无遮挡免费视频网站| 亚洲欧洲AV一区二区三区| 青青草原国产免费av观看| 无码内射在线| 亚洲av中文无码乱人伦在线r| 乱人伦中文视频在线观看免费| JIZZ亚洲国产| 国产日韩精品一区在线不卡| 98精品全国免费观看视频| 亚洲无码高清免费视频亚洲 | 久久这里只有精品国产99| 51国产偷自视频区视频手机观看| 天堂网亚洲系列亚洲系列| a亚洲天堂| a天堂视频| 国产日产欧美精品| 最新国产在线| 国产亚洲欧美在线中文bt天堂 | 青青热久免费精品视频6| 一级毛片免费观看久| 国产午夜一级淫片| 米奇精品一区二区三区| 影音先锋丝袜制服| 狠狠色成人综合首页| 被公侵犯人妻少妇一区二区三区| 2020精品极品国产色在线观看 | 亚洲成人播放| 欧美人与牲动交a欧美精品 | 亚洲精品自拍区在线观看| 国模私拍一区二区三区| 免费国产小视频在线观看| 在线中文字幕网| 国产精品成人不卡在线观看|