吳紅華, 張 亮, 馮 豪, 胡昊輝, 李正農
湖南大學 建筑安全與節能教育部重點實驗室, 長沙 410082
自然界中,近地風在其行程中會遇到不同的地形地貌,隨著地形和地表粗糙度的變化,風場變化也不盡一致[1],目前對于近地風特性的研究主要是風場沿高度方向的梯度分布和風剖面研究,而對地形地貌影響下風場的平面分布特征研究較少,并且多集中于風電領域。陳愛等[2]簡化三維分析模型,用數值模擬方法研究了復雜地形影響下不同來流風向時的風場分布,確定風力發電機的最佳安裝位置。Ren等[3]在某6 km×6 km的試驗場內設立10個固定測點,并結合CFD模擬和測點相關性,建立了風場預測模型,并將預測值與實測值進行對比,結果表明:弱相關測點預測效果較差。Palma等[4]采用線性與非線性方法研究馬德拉島東部海岸某區域風場特性,并與實測數據對比,得到了目標區域的風場參數,用以指導復雜地形環境下風資源評估。雷若冰等[5]對多個測風塔風速數據進行相關性分析,有效地描述了整個風電場群的風速分布。現有研究多基于數值模擬和多個測風塔之間數據相關性的算法研究,當測風塔相距較遠時,對局部區域的風場情況難以全面掌握,有一定局限性。
傳統的風場實測主要依靠固定式測風塔[6-7]和現場搭設可移動式測風桅桿[8-10]開展,但這類設備體積大、可移動性差,往往只能測量風場沿高度方向的梯度分布,測量平面風場難度較大。隨著無人機技術的發展,利用小型無人機測風引起廣泛關注。1992年,澳大利亞氣象局Holland等首次提出以氣象無人機攜帶皮托靜壓管等儀器測風的方法[11]。馬舒慶等[12]基于微型氣象無人機盤旋飛行,利用水平空速歸零法和解析法求得風速風向。周偉靜等[13]利用固定翼無人機攜帶皮托-靜壓管等測風儀器進行風場測量,并對實測數據進行誤差修正,提高了測量精度。固定翼無人機操控難度大,難以實現定點測量,且需要特定的起降跑道,對場地要求較高。多旋翼無人機具有垂直起降、機動靈活、定點懸停、精確定位等諸多優勢,因此用多旋翼無人機搭載風速儀進行風場測量值得深入探討。Bruschi等[14]在四旋翼飛行器機身上方安裝二維風速傳感器并進行風洞試驗,結果表明:風速數據存在一定誤差,而風向角的測量幾乎不受影響,但該試驗未對機身姿態改變時的影響進行研究。李正農等[15]對六旋翼無人機搭載風速儀測風的準確性進行了風洞試驗研究,結果表明:機身傾角會對風速測量產生一定影響,對風向角測量無影響,但試驗時無人機機身固定,不能模擬真實的飛行狀態。現階段對于多旋翼無人機測風的研究多基于數值模擬和風洞試驗,這兩種研究方式并不能模擬無人機在復雜大氣環境中真實的飛行狀態,因此,需要對無人機搭載測風儀實測的可行性進行深入研究。
本文通過多旋翼無人機搭載風速儀進行實地風速和風向測量,并對實測數據進行分析及誤差修正,初步驗證在復雜環境中利用無人機搭載風速儀進行風速風向實測的可行性;其次,基于不同地形地貌對于近地風場的影響不同,通過無人機多點測風并結合測風塔數據,獲取各測點風場與測風塔數據的相互關系,從而在已知測風塔數據時,推知測風塔周圍不同地貌影響下的某一高度平面的風場特性。不同來流方向地面粗糙度不同,對風場造成的影響也不盡相同,因此本文選取實測期間某一特定來流方向的數據進行分析,旨在對多旋翼無人機進行風場測量這一新方法進行初步探討和研究。
實測場地位于北京市延慶區中國科學院某試驗基地內,如圖1所示。

圖1 實測地點Fig.1 Test site
紅色星標位置為測風塔。為便于描述,將場地劃分為4個象限平面。如圖所示,第一象限地貌較為復雜,靠近測風塔處有2組東西走向的槽式聚光鏡(高約7 m),較遠處為低矮松樹(2 m左右)和灌木叢;第二象限中樹木較多,靠近測風塔處為低矮松樹(2 m左右),距離測風塔較遠處有廠房和大片高大的楊樹林;第三象限相對平坦,多為低矮松樹(2 m左右)和灌木叢,其對上空風場的影響可能較小;第四象限地貌最為復雜,有2組南北走向的槽式聚光鏡(高約7 m)和定日鏡群組(單個約12 m高),還有一些試驗廠房。復雜的場地狀況可能會造成上空風場的波動更大。該場地冬季西風盛行,來風方向場地較為平坦空曠,4、5級風較為常見,是進行實測研究的理想場所。
實測系統由40 m高的測風塔和大疆M600 PRO六旋翼無人機組成,如圖2所示。

圖2 現場實測系統Fig.2 The field measurement system
在測風塔10、20、30和40 m高度處各安裝了一個WindSonic二維超聲風速儀,風速儀采樣頻率為1 Hz。無人機機身上部搭載SA210二維超聲風速儀,采樣頻率也為1 Hz。風速儀測得數據通過無線電臺實時傳輸到電腦。兩超聲波風速儀的具體參數見表1。測風塔風速儀和無人機風速儀均為正北向安裝,規定正北方向來風時,風向角θ為0°;正東方向來風時,風向角θ為90°,其余風向角按照順時針方向類推。

表1 超聲波風速儀參數Table 1 Parameters of ultrasonic anemometer
為保證風速儀測量結果的準確性,實測前在風洞中利用澳大利亞TFI Series 100眼鏡蛇三維脈動風速探頭對兩超聲風速儀進行二次標定(出廠時已標定)。標定時,將眼鏡蛇風速探頭分別與兩超聲波風速儀在同一高度同一位置處進行測量,標定結果見表2。由表2可知,兩超聲風速儀與眼鏡蛇風速探頭所測風速基本一致,誤差(相對于眼鏡蛇風速探頭數據)均小于0.5%,可以認為兩超聲風速儀測風數據準確,可以用其所測數據直接進行對比分析。

表2 風速標定結果Table 2 Wind speed calibration results
本次試驗分2階段進行。第一階段探究復雜環境中無人機搭載風速儀實測的可行性與準確性:為避免無人機與測風塔相互影響,保證無人機飛行安全,將無人機放置在與測風塔水平距離為5 m處垂直起飛,與風場實測相對應,在20 m高度處進行風速風向測量,每次測量時間10 min,將測得的無人機數據與測風塔數據進行對比分析。第二階段進行平面風場的測定:通過無人機多點測風,并結合測風塔數據作為參考,獲取各測點位置風場與測風塔數據的相互關系,推知測風塔周邊不同地貌影響下的平面風場特性。
由于地貌中定日鏡約為12 m高,綜合考慮地貌對風場可能的影響以及無人機飛行安全,此次風場實測高度選為20 m。圖3中紅點位置為測風塔,將其作為參考點,設置為原點(0,0);其他測點位置通過坐標x、y確定,x指示東西方向,東方為正,y指示南北方向,北方為正,x、y的范圍均為[-100,100]。測點x、y方向間隔均為20 m,總共設置11×11=121個測點。無人機在每個測點懸停10 min。

圖3 實測測點坐標系Fig.3 Coordinate system of measured points
矢量風速與風向是密切相關的,風向不同時直接比較風速意義不大。后續風場測量過程中,受地貌影響,不同測點處無人機所測風向與測風塔風向不可能完全一致,因此需要將風速分解到x、y方向上,以便于比較。測風塔和無人機上安裝的風速儀所實測到的數據為風速時程u(t)和風向時程φ(t)兩列,規定正北方向(y軸正向)為0°,正東方向(x軸正向)為90°,如圖4。通過風向φ(t)可以將風速時程u(t)分解為分量ux(t)和uy(t)。實測風速時程沿x、y方向的分量ux(t)和uy(t)為:

圖4 風速、風向示意圖Fig.4 Sketch map of wind speeds and directions

(1)
為確定最大平均風速而規定的時間間隔稱為平均時距。我國規范將平均時距取為10 min,平均時距內2正交方向的平均風速為:

(2)
式中,n為采樣頻率與時距的乘積。相應平均時距內水平平均風速U和平均風向θ分別為:

(3)

(4)
定義Ii(i=x,y)為x、y方向上的湍流度分量。Ii反映了風的脈動程度,為某一高度處在給定持續時間內風速分量時程標準差與相應高度處水平平均風速U的比值:
Ii=σi/U, (i=x、y)
(5)
式中,σx、σy分別為ux(t)、uy(t) 的標準差。
風洞試驗結果表明,無人機機身傾角會對無人機風速測量產生影響,因此需要先根據風洞試驗結果對無人機傾角造成的誤差進行修正。將無人機實測風速時程數據u(t)按照每30 s時距求取平均值,根據平均值的大小選取修正系數,進行不同傾角下風速修正,具體修正公式和修正系數為:
u1(t)=u(t)/α
(6)
式中,u1(t)為修正后風速時程,u(t)為原始風速時程,α為修正系數。李正農等[15]根據無人機相關參數推算出不同風速下機身傾角,并進行風洞試驗,試驗結果表明:機身傾斜時無人機所測風速偏大,控制風速為8 m/s時,無人機測得風速比水平時約增大2%;控制風速為10 m/s時,無人機測得風速比水平時約增大5%,其余風速范圍按照插值法確定,具體修正系數如表3所示。

表3 風速修正系數Table 3 Correction coefficient of wind speed
利用上述修正方法對實測無人機風速時程進行修正,然后按式(1)~(5)分解計算,將計算結果與測風塔數據進行對比,如表4所示。可以看出,無人機原始實測風速較測風塔偏大,通過修正,可以很大程度上消除機身傾角對風速測量的影響。修正后的無人機平均風速數據與測風塔數據比較接近,但是由于風向角存在誤差,分解到x、y兩個方向的風速分量仍然存在較大誤差。

表4 無人機風速修正前后數據對比Table 4 Data comparison before and after MUA wind speed correction
風洞試驗結果還表明,無人機風向的測量不會受到機身姿態變化的影響,但通過實測數據可以看出無人機和測風塔存在大約3.5°的風向測量誤差。這是由于測風塔和無人機風速儀均以正北方向為0°方向角,在實際操作過程中,無人機風速儀0°角使用GPS和電子指南針輔助對北,精度高,幾乎不會產生誤差;而測風塔風速儀安裝在20 m高度處,高空作業難度大,在手動進行0°角對北的過程中不可避免地可能產生一定的偏差,造成此處3.5°的安裝誤差。風向誤差的存在導致分解到x、y兩個方向的風速分量誤差較大,因此以測風塔數據為基準,修正無人機風向數據,可以消除風向誤差對風速的影響,從而更好地探究無人機實測的準確性。將無人機所測風向時程每一瞬時點風向修正3.5°以消除安裝誤差,然后利用修正后的風向時程進行計算,結果如表5所示。
從表5可以看出,經過風向修正后,x方向風速分量增大,y方向風速分量減小,2個風速分量和平均風速都更接近測風塔風速數據,風速誤差顯著減小。在后續風場測量中,為保證無人機數據的準確性,將無人機起飛點統一設定于距離測風塔5 m處,利用測風塔數據修正無人機風速儀誤差后,再進行不同測點處的風場測量。

表5 無人機風向修正前后數據對比Table 5 Data comparison before and after MUA wind direction correction
數據處理前后的風速和風向時程如圖5所示,從圖中可以看出,修正后無人機風速和風向時程數據與測風塔風速風向時程數據吻合良好。需要注意的是,y方向風速分量時程原本為負值,為便于繪圖,將y分量同時乘以-1處理,圖6同理。

圖5 測風塔、修正后無人機風速風向時程圖Fig.5 Wind speed and direction time history of wind tower and modified UAV
修正后的無人機風向與測風塔風向一致,無人機平均風速、風速分量與測風塔數據相比誤差較小,但是2個分量方向的無人機湍流度仍然較大,原因主要有2點:一是當風速發生變化時,無人機為保持飛行的穩定性會立刻進行橫滾角和俯仰角的姿態調整,造成部分瞬時點誤差偏大,增大了數據的波動程度;二是無人機在實測過程中由于信號傳輸等原因產生少量野值點,也使測得的數據波動變大,因此需要進一步處理計算湍流度誤差。

(i=3,…,n-2)
(7)
式(7)無法計算4個端點(開始2個點和最后2個點),這種情況稱為“端部效應”。4個端點值可以采用原始數據補齊,即:

(8)
將上述經過無人機風速和風向修正后的數據進行分解,然后對分解后的x、y方向風速分量時程進行5點滑動平均處理,結果如表6所示。從表6中可以看出,滑動平均對平均風速、平均風向、風速分量沒有影響,但是可以有效地減小湍流度。其原因是采用5點滑動平均后,部分野值點的影響被消除,數據更為平滑,時程數據的波動程度明顯減小。

表6 無人機數據滑動平均修正前后結果對比Table 6 Comparison of results before and after MUA data moving average correction
對風速分量滑動平均之后,風速分量時程的每個瞬時點會發生變化,因此與之對應的風向時程瞬時數據也發生了改變,利用式(9)可以推算變化之后的風向時程數據。
或
(9)


圖6 測風塔、滑動平均后無人機風速風向時程圖Fig.6 Wind speed and wind direction time history of wind tower and UAV after moving average
由于地貌的影響,不同測點位置的風向數據與測風塔存在不同,風場數據無法直接進行比較,需要將實測數據進行分解處理。通過第2節所述無人機數據前處理方法對各測點無人機實測風速風向數據進行修正分解,然后取對應相同時間段的測風塔分量數據,利用式(10)求取各測點位置無人機和測風塔分量數據的比值C,比值C表示地貌影響下20 m高度水平面不同測點位置風場參數與測風塔風場參數的相對關系。通過比值C和測風塔風場數據可以推知不同測點在地貌影響下的風場狀況;此外,比值C能在一定程度上反映地貌對測點風場的影響程度,C越大表示測點位置地貌對風場的影響程度越大。比值C計算公式為:

(10)

實測后得到全部測點的風速比CS見表7和8,為了更加直觀地得到整個風場平面風速實測值的變化趨勢,通過Matlab對所有實測值風速比繪制三維圖和等值線圖,并將等值線圖與場地圖進行對應,詳見圖7和8。
從表7、8和圖7、8可以看出,平面內風速比有一定的波動,這種波動情況能夠反映不同地貌影響下風場風速變化情況。通過x、y方向風速分量比三維圖可以看出,第二、四象限風速比波動較大,第一、三象限波動較小。需要注意的是實測風向接近270°,分解后y方向風速分量較小,導致部分比值大,而x方向更接近實測風的來流方向,更具有代表性。

表7 x方向風速分量比CSxTable 7 The ratio of wind speed component in x direction CSx

圖7 風速比CS三維圖Fig.7 Three-dimensional graph of wind speed ratio CS
第一象限中地勢平坦,風場受地貌影響較小,因此風速比有一定變化但是變化不劇烈。
第二象限中,距測風塔遠處的風場出現了較大的風速比波動,此象限x、y方向風速分量比最大值均位于(-60,80)測點,分別為1.045、3.540,原因可能是受到附近成片楊樹林的干擾,風速發生較大變化。
第三象限的地貌較為平坦,當西側來風時,整個場地的樹木對于20 m高度處的風場影響較小,故此象限內風速比的整體變化較小,僅有個別測點數值較大。

圖8 風速比CS等值線圖Fig.8 Contour graph of wind speed ratio CS

表8 y方向風速分量比CSyTable 8 The ratio of wind speed component in y direction CSy
第四象限地貌最為復雜,西側來風時,由于地面槽式聚光鏡和定日鏡群的干擾,此象限出現了較大的風速比波動。整個風場中x、y方向風速分量比最大值均出現在此象限內,其中x方向風速分量比最大值1.098出現在兩層試驗用房的上方,y方向風速分量比最大值3.738出現在東西走向的槽式聚光鏡上方,另外此象限內還有多個較大值出現,說明這些測點位置風速較測風塔變化較多,風場受地貌影響顯著。
全部測點的風向比CD見表9。為了更加直觀地得到整個風場平面風向角比的變化趨勢,通過Matlab軟件將所有風向角比繪制成三維圖和等值線圖,詳見圖9和10。

表9 風向比 CDTable 9 The ratio of wind direction CD

圖9 風向角比值CD三維圖Fig.9 Three-dimensional graph of wind direction ratio CD

圖10 風向角比值CD等值線圖Fig.10 Contour graph of wind direction ratio CD
測風塔風速儀和無人機風速儀均以正北向為0°風向角,試驗過程中測得的來流風為西風,來流方向場地較為平坦空曠。通過分析實測數據可知,無人機與測風塔風向數據的比值非常接近1,即在相同時間段內,無人機風速儀和測風塔風速儀測得的風向角差別較小。
從風向角比值三維圖可以看出,風向角比在第四象限內的波動有明顯的增大,最大值1.015和最小值0.972均位于這一象限。從風向角比等值線圖可以看出,風向角比波動較大的區域位于聚光鏡和定日鏡群上方,原因可能是槽式聚光鏡和定日鏡群較高,導致部分測點風場受到干擾,風向產生變化,從而增大了風向角比的波動程度;其他3個象限風向角比波動較小,僅有個別測點數據較大,說明這3個象限內地貌對20 m高度處風場風向影響有限。
全部測點實測后計算得到的x、y方向湍流度分量比CT見表10和11。與風速和風向相同,通過Matlab軟件把所有湍流度比繪制成三維圖和等值線圖,并將等值線圖與場地圖進行對應,詳見圖11和12。
從表10、11和圖11、12可看出,x、y方向湍流度分量比的波動程度大,這說明整個風場平面湍流度變化較大。從湍流度比等值線圖可以看出:

圖11 計算湍流度比CT三維圖Fig.11 Three-dimensional graph of calculated turbulence ratio CT

表10 x方向湍流度分量比CTxTable 10 The ratio of turbulence component in x direction CTx

表11 y方向湍流度分量比CTyTable 11 The ratio of turbulence component in y direction CTy
第一象限中部分測點風場受到下方東西走向的聚光鏡的干擾,x、y方向湍流度分量比數據偏大。
第二象限遠離測風塔的位置受到成片楊樹的影響,湍流度有所增加,因此部分測點的湍流度分量比值較大,此象限內x方向湍流度分量比最大值達到1.365。
第三象限除個別測點湍流度分量比偏大外,整個象限湍流度比及其變化程度與其他3個象限相比較小,這是因為第三象限地貌較為平坦,地貌對上空風場影響小,風速的波動程度也更小。
結合比值表和圖11、12可以看出,整個風場平面x方向湍流度分量比最大值1.431和最小值0.540均位于第四象限東西走向聚光鏡與南北走向聚光鏡的交匯區域,另有多個較大值出現在定日鏡群上方,y方向湍流度分量比在槽式聚光鏡上方也明顯偏大;此外,第四象限等值線與其他3個象限相比更為密集,表明第四象限x、y方向湍流度分量比波動相對其他象限更為劇烈,原因是地面的7 m高槽式聚光鏡和12 m高定日鏡群對20 m高度處風場平面干擾更大,使得上空風場變化復雜,湍流度顯著增大。
本文通過多旋翼無人機搭載風速儀,對某試驗基地區域上空平面風場進行實測,將實測結果結合場地進行分析,探討了利用多旋翼無人機搭載風速儀進行風場測量的可行性,得到以下結論:
1) 無人機實測平均風速較測風塔實測平均風速偏大,通過機身傾角修正可以很大程度上消除平均風速誤差。測風塔風速儀安裝時手動對準0°方向角的過程中出現安裝誤差,使無人機風向數據和測風塔風向數據存在偏差,導致x、y方向風速分量誤差較大,經風向修正后,風速分量誤差顯著減小。
2) 由于無人機飛行姿態調整等原因,無人機測量得到的湍流度數據偏大,通過滑動平均處理可以一定程度上減小無人機湍流度,使誤差滿足實測要求。
3) 地貌對于風場影響明顯。第四象限地貌復雜,聚光鏡和定日鏡對上空風場干擾較大,此象限內測點風場參數會有較大的波動變化;其他3個象限地貌相對平坦,風場參數波動較小,但會在部分測點受到地貌影響,產生較大變化。
4) 場地內無人機和測風塔實測風場數據的比值關系,可以一定程度上反映測風塔周邊復雜地貌對于上空風場的影響程度,利用比值C和測風塔數據可以推知不同測點處風場狀況,初步驗證了利用無人機進行風場測量分析的可行性,為風電場微觀選址、區域風場測量等提供了新的思路。