范禮強, 鄭關超, 吳海燕, 郭萌萌, 盧 霞, 李 玉, 譚志軍, 3
貽貝對麻痹性貝類毒素的蓄積代謝研究進展
范禮強1, 2, 鄭關超2, 吳海燕2, 郭萌萌2, 盧 霞1, 李 玉1, 譚志軍2, 3
(1. 江蘇海洋大學測繪與海洋信息學院, 江蘇 連云港 222005; 2. 農業農村部水產品質量安全檢測與評價重點實驗室, 中國水產科學研究院黃海水產研究所, 山東 青島 266071; 3. 青島海洋科學與技術試點國家實驗室, 山東 青島 266237)
麻痹性貝類毒素(paralytic shellfish toxins, PSTs)能夠導致貝類、魚類等海洋生物染毒或死亡, 危害海洋生態安全及人類健康。其中, 貽貝具有強蓄積性特點, 在國外可作為PSTs的指示性生物。近年來, 我國因食用貽貝造成多起PSTs中毒事件成為安全關注重點, 因此急需弄清其風險形成機理。本文通過綜述我國近海貽貝等貝類中PSTs的風險程度、貽貝對不同產毒藻來源的PSTs的蓄積作用, 分析環境因子對于蓄積代謝的影響, 深入挖掘貽貝蓄積代謝特異性。進而聚焦貽貝代謝階段的表達調控過程、影響因素、轉化作用及方式等。未來應側重于摸清我國目標區域貽貝等海洋貝類中PSTs基礎風險規律和變化過程, 并據此建立區域性PSTs風險防控技術, 提高我國貽貝中PSTs風險的主動防控能力, 對于保障消費者健康和海洋生態安全具有積極意義。
貽貝; 蓄積代謝; 免疫; 風險評價
近年來, 有害赤潮在世界范圍內呈現出頻率增加、區域擴大、危害日益嚴重的發展趨勢, 導致貝類中貝類毒素的安全風險愈加嚴峻[1]。根據所引起的中毒癥狀, 可將貝類毒素分為: 麻痹性貝類毒素(paralytic shellfish toxins, PSTs)、腹瀉性貝類毒素(diarrhetic shellfish poisoning, DSP)、神經性貝類毒素(neurotoxic shellfish poisoning, NSP)、記憶缺失性貝毒(amnesic shellfish poisoning, ASP)和西加魚毒素(ciguatera fish poisoning, CFP)等[1-2], 其中PSTs是最具代表性的一類, 分布最廣、毒性最強[2]。PSTs主要由海洋環境中的亞歷山大藻()、裸甲藻()、盾甲藻()等甲藻及生活在淡水中的藍綠藻產生[3]。雙殼貝類濾食有毒藻類, 毒素在貝類體內蓄積或通過食物鏈作用傳遞至人類, 引起人類食物中毒[1]。全球每年因PSTs導致的中毒事件約2 000起, 占貝類毒素中毒事件的64%[4]。其中, 雙殼貝類(包括貽貝、扇貝、蛤和牡蠣)是最主要的食物鏈傳播來源, 也是美國、加拿大、歐盟等國家及組織開展PSTs管控重點[3], 歐盟限量標準為800 μg STXeq·kg–1[5]。我國是全球第一貝類養殖大國, 同時也是PSTs有害赤潮高發國家之一。
近年來, 我國沿海地區多發、赤潮, 主要分布在渤海(秦皇島)、東海(浙江、福建及南寧)部分近岸海區[1, 6]。其中, 秦皇島海域自2016年起春季連續暴發赤潮, 貽貝中毒素蓄積量最高為52 072.8 μg STXeq·kg–1, 超過歐盟限量標準(800 μg STXeq·kg–1)的65倍[7], 可見危害之嚴重性。同年福建近海暴發赤潮, 其中貽貝中PSTs蓄積含量最高[8-9]。此外Isabel等[10]的研究也表明, 貽貝較其他貝類具有更高的蓄積能力, 它也是造成我國PSTs食物中毒事件的主要物種[11-12]。因此, 評估貽貝對PSTs的蓄積代謝特異性, 對于我國質量安全監管具有重要的現實意義。
貽貝是我國四大經濟貝類之一, 紫貽貝、翡翠貽貝和厚殼貽貝是我國沿海常見種類[13], 最適生長溫度為5~22 ℃, 鹽度為15~40, 是環境適應能力較強的廣溫廣鹽類生物。貽貝屬于濾食性生物, 并且對不良環境具有強耐受力, 因此國內外學者已經將其用于海洋重金屬[14-17]、全氟化合物[16]、農藥[18-19]等污染物的監測研究中, 作為生物指示物評估海洋生態系統的污染狀況[15]。近十年來, 研究人員在實驗室內不斷模擬雙殼貝類蓄積和清除PSTs過程, 發現貽貝相較其他貝類, 具有蓄積速率快、蓄積量大、清除快等特點[20-21]。這也使得貽貝成為研究PSTs等海洋污染物初始組分的重要指示生物。因此亟需深入探究貽貝在PSTs污染監測過程中的蓄積清除及代謝轉化機理, 對于準確評價其安全風險并構建有效防控措施具有重要作用。
我國近海PSTs污染由來已久, 21世紀初北黃海、福建沿海、長江口鄰近海域、廣東沿海PSTs污染問題較為突出, 中毒事件時有發生[1]。近年來, 渤海和福建沿海PSTs污染較為嚴重[22]。為準確探究我國近海貝類中PSTs風險程度, 表1總結了2005— 2019年我國近海貝類中PSTs調查結果。其中, 渤海2016年河北秦皇島貽貝產品PSTs含量超標, 導致10余人中毒且2人死亡。污染調查中發現PSTs最高含量達到52 072.8 μg STXeq·kg–1, 是歐盟限量標準 (800 μg STXeq·kg–1)的65倍, 貽貝污染極為嚴重。之后2017年、2019 年連續監測, 發現貽貝等貝類中PSTs檢出率和殘留量都有所下降[23-24], 但為防止PSTs污染的突然爆發, 應針對貝類中PSTs的風險構建有效防控措施, 以便準確認知我國貝類中PSTs的殘留風險。黃海海域2007—2008年貝類污染調查中蝦夷扇貝的PSTs檢出率達到了79.2%, PSTs殘留量為262.0~8 339.6 μg STXeq·kg–1[23, 25]。2016年牡蠣等貝類中PSTs最高含量為562.9 μg STXeq·kg–1, 接近歐盟限量標準, 亟待引起關注。東海海域2016—2017年貝類中PSTs檢出率和最高殘留量分別為74.2% 和23 293.0 μg STXeq·kg–1[26], 直接導致2017年6月福建漳州發生數十人貽貝PSTs中毒[27], 貝類中PSTs風險程度極高。在2017年貽貝污染后續調查中, 發現貝類中PSTs殘留量降低至71.0 μg STXeq·kg–1, 存在地域性反復風險。南海海域2005—2006年貝類中PSTs檢出率為14.3%, 最高殘留量達3 700.0 μg STXeq·kg–1, 是限量標準的4.6倍, 污染嚴重[28-29]。之后的南海貝類中PSTs污染調查中檢出率逐年增加, 2010—2011年是32.9%, 2015年更是達到了86.0%[30], 但南海貝類中PSTs殘留量卻在逐年下降。綜上可見, 隨著我國環境污染得到有效控制, 有害赤潮由大面積爆發轉為小范圍板塊化暴發趨勢。由于有害赤潮后產生的豐富孢囊沉降至表層沉積物, 受環境影響成為有害赤潮的“種子庫”, 顯著提高目標海區的PSTs暴發風險。

表1 不同海域貝類中麻痹性貝類毒素分布情況
注: -表示無數據
從2005—2019年的全國近海貝類養殖區PSTs污染調查數據發現: 貝類毒素污染存在季節性差異, 與產毒藻的季節性生長有較大關系[31-32], 尤其是受海水溫度影響顯著[33]。我國海域南北跨度大, 調查發現南海貝類中PSTs含量多在冬季或早春達到最高。東海緯度高于南海, 貝類中PSTs檢出率和超標率也相應推遲到夏季6、7、8月份達到最高[9, 34], 而黃渤海PSTs污染多在4、5月份暴發[33, 35]。貽貝作為我國沿海重要養殖經濟貝類, 四大海域貽貝的PSTs檢出率和殘留量都較高[36], 這也與貽貝具有蓄積速率快、蓄積量大的研究結果相一致。為保障我國貝類產業健康發展和消費者生命安全, 亟需深入探究貽貝中PSTs的蓄積清除及代謝轉化規律, 以便更好的對貝類毒素安全風險進行有效管控。
貽貝能夠快速蓄積大量PSTs, 具有蓄積速率快、蓄積量大、蓄積率高的特點。如表2中所示, 貽貝蓄積速率最高為1 736.0 μg STXeq?kg–1?d–1, 是其他四種主要經濟貝類的3~15倍[37-42]。邱江兵等[42]和Katsushi等[40]PSTs暴露實驗中貽貝的整體蓄積率分別達到13.6%和14.6%, 高于牡蠣的8.3%、菲律賓蛤仔的2.5%和文蛤的12.4%; 貽貝能夠蓄積大量PSTs, 暴露實驗中貽貝體內PSTs含量分別達到了8 680.0 μg STXeq·kg–1和10 960.0 μg STXeq·kg–1, 約是歐盟限量標準(800 μg STXeq·kg–1)10.6倍和13.7倍。Shumway 等[43]研究表明貽貝神經元軸突對PSTs毒素STX不敏感, 這可能是貽貝PSTs蓄積速率快、蓄積量大的主要原因之一。貽貝組織間蓄積速率和蓄積量存在較大差異[44], 內臟團是貽貝蓄積PSTs的靶器官, 對PSTs蓄積速率和蓄積量都遠高于鰓、閉殼肌、性腺等其他組織[42], 內臟中毒素含量有時甚至可以達到整體的90%以上[45]。

表2 不同貝類對麻痹性貝類毒素的蓄積規律
貽貝在暴露實驗中能夠快速將PSTs清除到體外, 具有清除速度快、清除率高等特點[17, 42]。根據Bricelja等[47]研究, 雙殼貝類清除毒素速度大致可以分為: 快、中速清除貝類(6.0%/d~17.0%/d)和慢速清除貝類(0.3%/d~ 4%/d)。貽貝的最高清除速度(1 500.0 μg STXeq?kg–1?d–1)和清除速率(17.4%/d) (見表3)分別是其他四種經濟貝類的8~15倍和1.3~5.4倍, 屬于快速清除貝類。貽貝大約5 d時間, 即可將8 680.0 μg STXeq·kg–1迅速排除至限量標準以下[42]。Katsushi等[40]研究發現貽貝對PSTs清除速度達1 326.6 μg STXeq?kg–1?d–1(清除速率為12.1%/d), 遠高于其他貝類。Ana等[48]的貽貝PSTs清除實驗研究發現, 清除實驗中的前24 h貽貝體內PSTs毒性便下降了約66.9%。以上研究結果都證明貽貝在不同環境條件下都具有較強的毒素清除能力。
海洋環境因子如溫度、鹽度、pH等對貽貝的過濾、攝食等生長生理活動有重要影響, 從而直接影響貽貝對藻毒素的蓄積和清除。溫度是環境因子中首要影響因素, 高溫同時降低毒素蓄積量并減緩毒素清除速度。Ana等[48]研究了溫度對貽貝蓄積、清除能力的影響, 結果表明19 ℃條件下貽貝5天蓄積了1 493.8 μg STXeq·kg–1毒素, 而當溫度升高至24 ℃時貽貝5天僅蓄積661.9 μg STXeq·kg–1毒素, 蓄積量降低了約49.0%, 且毒素清除效率也顯著降低, 殘留時間延長[20]。這是由于高溫環境下貽貝對產毒藻的攝食明顯減少[49-51]。研究表明, 24 ℃時, 貽貝的過濾率降低至19 ℃時的1/6。此外高溫誘發貽貝應激反應, 其參與代謝過程的關鍵調節酶如糖酵酶丙酮酸激酶(PK)等活性受到抑制[49], 從而使得貽貝清除率下降[52-53]。

表3 不同貝類對麻痹性貝類毒素的清除規律
不同鹽度海水中貽貝毒素蓄積速率、蓄積含量存在較大差異。研究發現鹽度25.7時貽貝攝食最為活躍, 毒素蓄積含量也相應較高[54-56], 但當鹽度降低至5.0時, 貽貝過濾海水速率顯著降低, 毒素蓄積能力減弱[57-59]。這是由于低鹽度刺激貽貝產生應激反應, 貽貝通過閉合外套膜以降低外界環境對生理活動的影響[21]。因此, 在低鹽度環境下, 貽貝過濾率、攝食率降低, 對藻毒素的蓄積能力降低。另外, 研究表明pH降低至7.5時貽貝生長、代謝等生理活動都會顯著減慢。Ana等[48]研究了氣候變化驅動因素(升溫和酸化)對貽貝中PSTs蓄積代謝影響。結果表明上述氣候改變可導致殘留毒素毒性降低但毒素殘留時間延長[60]。在pH降低至7.3時貽貝甚至可能會直接死亡[61-63]。
除溫度、鹽度、pH會影響貽貝對PSTs的蓄積清除外, 貽貝的種內/種間競爭等也會對貽貝的蓄積、清除產生影響, 競爭會增加它們對食物的需求, 通過鰓過濾更多的水, 因此PSTs蓄積量顯著增加[62-64]。
研究表明, 產毒藻的毒性強弱、密度以及投喂方式都能夠影響貽貝蓄積毒素能力。我國東部沿海主要優勢產毒藻為、。由于藻毒素來源不同, 貽貝的蓄積能力具有顯著差異[45]。黃德強等[65]研究發現貽貝對于的攝食率顯著低于無毒餌料藻。且Lee等[66]研究證明貽貝在毒性大于26 pg STXeq·個–1時攝食率也降低為原來的1/2。在我國近海PSTs調查中[22, 67], 貽貝在赤潮中的蓄積量比在其他產毒藻中的要高。因此, 貽貝的蓄積能力受產毒藻種類、藻密度等因素影響。
此外, PSTs產毒藻的不同密度也會影響貽貝蓄積PSTs。貽貝的攝食率一般隨浮游植物密度的增加而升高, 這是由于在較高食物密度下, 過濾同樣多海水能夠獲取更多食物[68]。Negri等[69]對比密度為2×105個/mL和2×104個/mL的藍綠藻對淡水貽貝毒素蓄積影響時發現: 暴露于密度為2×105個/mL產毒藻中的貽貝體內PSTs毒性水平在2~3天就達到800 μg STXeq·kg–1, 而暴露于2×104個/mL產毒藻中的貽貝5周后只有少量毒素被檢測到, 差異顯著。趙俊梅等[68]的暴露實驗也反映了類似結果, 當產毒藻密度增加時貽貝攝食率升高, PSTs蓄積量增加。
PSTs產毒藻的不同投喂方式也會對貽貝蓄積PSTs產生影響, 連續投喂時貽貝蓄積量要高于定期投喂時的[42, 70]。造成這種現象的原因可能是貽貝長時間處于較低密度的毒藻中, 毒素對其攝食不產生抑制, 貽貝能夠不斷從水中過濾藻細胞, 毒素更容易在體內累積。而定期投喂高密度的毒藻會使貽貝對毒藻產生生理抑制[69], 并且會較快速把體內PSTs清除進水體中。
全球目前已鑒別的PSTs約60余種, 主要包括四大類: 氨基甲酸脂類毒素, 包括石房蛤毒素(STX)、新石房蛤毒素(NEO)和膝溝藻毒素(GTX1-4); N-磺酰氨甲?;惗舅? 包括GTX5(B1)、GTX6(B2)和C1-C4; 脫甲?;惗舅? 包括dcSTX、dcNEO、dcGTX1-4; 脫氧脫氨甲酰基類毒素, 包括doSTX、doGTX2和doGTX3等[42, 71]。除了常見的赤潮藻種毒素, 更多的組分僅在貝類體內發現, 為貝類的代謝產物[72-73]。如圖1所示, 貝類中常見的PSTs組分間轉化形式。

圖1 貝類中常見PSTs組分間轉化
注: 實線表示還原反應; 點虛線表示水解反應; 橫虛線表示異構化
Kim等[74]進行了中PSTs毒素組分與貽貝中PSTs組分對比研究,主要毒素為C2、GTX4, 貽貝暴露初期體內PSTs組分與藻細胞中類似, 隨著中毒時間的增加貽貝中主要毒素變為C1和GTX1, 分別是初始C2和GTX4的2.1和2.4倍, Wiese等[75]和Gracia等[39]的研究中也得出相似結論。但與扇貝、牡蠣等相比, 貽貝體內PSTs的代謝轉化率相對較低[76]。Choi等[44]用只含有C2毒素的(ATDP)對貽貝開展暴露實驗, 凈化階段在貽貝內檢測到了GTX2/3等毒素, 證實了貽貝能夠將低毒性的N-磺酰氨甲?;惗舅剞D化成高毒性的氨基甲酸酯類毒素。于姬等[25]在體外實驗研究中同樣發現在酸性加熱條件下N-磺酰氨甲酰基類毒素(C1-4、GTX5和GTX6)易轉化為PSTs組分中毒性最強的氨基甲酸酯類毒素(GTX1-4、STX和NEO)。Paulo等[77]對鏈狀裸甲藻()展開研究,主要毒素為C1-C4、GTX5、GTX6, 而貽貝體內轉化成了dcGTX2&3、dcSTX和dcNEO。還原反應是貝類常見的PSTs轉化反應, 且還原反應后貝類中PSTs毒性相對更高, 如GTX2&3還原生成STX、C1&2還原生成GTX5、dcGTX2&3還原生成dcSTX[70]。邱江兵等[42]實驗中表明GTX6的N1位羥基在貽貝消化腺中能夠發生還原反應生成GTX5。
近些年, 在PSTs檢測中發現貝類中獨有的PSTs代謝物, 如幾種新的STX變體(M1-M4)[78-80], 在微藻中沒有發現過。根據這些化合物的結構和活性關系, 推測可能是貽貝自體解毒的中間產物[81]。為了解這些新代謝物的來源和生物轉化途徑, Ding等[82]在實驗室條件下用兩種(ATHK株和TIO108) 喂養貽貝, 結果表明11-羥基-C2毒素(M1)和11-二羥基-C2(M3)由C2轉化而來, 11-羥基-C4毒素(M7)和11-二羥基-C4(M9)由C4轉化而來。此外, M2、M4和M6可能是GTX2/3的代謝產物, M8和M10可能是GTX1/4轉化而來。這些研究都表明, 貽貝不僅可以對藻中已存在的PSTs進行相互轉化, 還可以產生新的PSTs代謝產物, 且新型代謝物與貝類的解毒過程有關。
酶類在PSTs的代謝轉化過程中發揮著重要的催化作用, 如表4所示, 主要包括氨甲酰水解酶、磺基轉移酶、氨基甲酰酯酶、N-氧化酶和谷胱甘肽還原酶[42, 78, 83-85]。Lin等[83]從貝類消化腺中分離純化了一種氨甲酰水解酶, 實現R4基團中氨甲?;?或N-磺酰氨甲?;?的水解。Yoshida等[78]研究結果表明磺基轉移酶可將3’-磷酸腺苷-5’-磷酸硫酸(PAPS)中的硫酸基團轉移到STX和GTX2&3的N-21位氨甲基基團, 分別生成GTX5和C1&2。卞中園等[84]表明氨基甲酰酯酶能夠催化氨基甲酸酯類毒素(STX、NEO、GTX1-4) C11 位上的氨基甲酰基發生水解反應, 生成脫氨甲酰基類毒素(dcSTX、dcNEO、dcGTX1-4)。鄒迎麟等[85]在PSTs生物合成中檢測到N-氧化酶可以將GTX2&3轉化為GTX1&4。邱江兵等[42]進行了消化腺體外轉化實驗, 發現貽貝消化腺在谷胱甘肽還原酶的催化下, 能夠促使11α-表聚體毒素如GTX1、GTX2、C1向11β-表聚體毒素如GTX3、GTX4、C2轉化。

表4 貽貝參與PSTs轉化過程調節酶
貝類中PSTs的代謝轉化還受到pH、溫度和還原劑(谷胱甘肽、半胱氨酸)等因素的影響。如在較高溫度和pH值條件下會加速PSTs的差向異構化[86]。雙殼貝類組織中毒素的生物轉化除了化學和酶促作用的結果, 也可能是由于存在于消化道中細菌轉化的結果。Kotaki等[87]研究表明弧菌、假單胞菌能夠將CTX1/2/3和NEO毒素轉化為STX, 而且有氧條件比無氧條件轉化快。
研究表明, 貽貝體內的代謝靶器官內臟團會啟動抗氧化應激防御系統, 用于減輕PSTs帶來的損傷[45, 88]。PSTs進入貽貝體內后, 將產生大量活性氧(ROS), 引起生物體氧化應激, 導致脂質過氧化、蛋白質變性、DNA 損傷等。內臟團和鰓組織內的抗氧化防御系統中的抗氧化酶, 如谷胱甘肽過氧化物酶(glutathione peroxidase, GSH-PX)、超氧化物歧化酶(superoxide dismutase, SOD)、酸性磷酸酶(acid phosphatase, ACP)等會被激活, 以消除ROS, 減少損害[41-42]。Qiu等[89]研究A.tamarense (ATHK)對貽貝抗氧化系統的影響, 發現在毒素蓄積和清除期間, ROS在貽貝內臟團中會迅速產生并消失, SOD和GSH-PX活性增強, 有效清除貽貝體內超氧陰離子自由基和過氧化氫(H2O2)。GSH-PX 還在貽貝體內起到脫毒作用, 其能將脂類過氧化物還原為相應的醇, 并可以代替過氧化氫酶(Catalase, CAT)將游離的H2O2原成水, 同時催化谷胱甘肽(Glutathione, GSH)轉變為氧化型[90]。粒細胞分泌的ACP在抗氧化響應過程中活力增強, 魚煙酰胺腺嘌呤二核甘酸磷酸酶(nicotinamide adenine dinucleotide phosphate, NADPH)是一種還原型輔酶, 含量降低, 部分NADPH可能參與了毒素的生物轉化。
血細胞在貽貝天然免疫過程中發揮重要作用, 通過吞噬或包裹活的病原體來保護組織, 并通過炎癥過程修復由損傷、中毒和感染引起的組織損傷。通過超微結構觀察可以發現PSTs在暴露初期會造成貽貝鰓組織柱狀上皮細胞中線粒體和溶酶體增多且聚集, 后期上皮細胞腫脹破裂, 黏液細胞大量釋放粘液顆粒, 細胞核萎縮變形, 嚴重時細胞壞死裂解[41]。Galimany等[86]研究貽貝的免疫反應, 發現血細胞向腸內的滲出, 推測是為了分離腸內有毒藻細胞, 從而將組織損害降到最低。Pousse等[91]研究發現血細胞能將有毒細胞包裹在消化道內, 形成吞噬泡, 吞噬泡與初級溶酶體融合形成次級溶酶體, 次級溶酶體內的ACP就會將其降解清除到體外, 從而減少藻細胞與其他組織的接觸。Bianchi等[92]對貽貝進行免疫功能實驗研究, 發現PSTs暴露3d后貽貝血細胞吞噬功能顯著增強, 以減輕PSTs對組織的損害。但PSTs對貽貝生理活動的影響大多是暫時的, 且在長期暴露于PSTs產毒藻后, 貽貝表現出了良好的生存適應和免疫能力。
現有結果表明, PSTs已成為危及我國近海生態及貝類質量安全的關鍵因子, 其中尤以貽貝中PSTs風險最為嚴峻, 我國近海中不斷檢出且多次誘發中毒事件, 亟需進行重點防控。國內外研究表明, PSTs可以被貽貝快速蓄積并極易超過現有安全限量標準, 隨后在貽貝體內發生分布、代謝及轉化等過程, 而環境因素如溫度、pH、鹽度、種群密度及產毒藻種類等能夠影響貽貝的過濾率、攝食率, 從而改變貽貝對PSTs的蓄積率、蓄積量以及清除率。目前已經從藻和貝中分離鑒定了60多種PSTs及其代謝產物, 它們的殘留能力、毒性大小和靶器官等決定了貝類中PSTs的風險表征及危害程度。因此, 后續應側重于我國近海重點貝類增殖區, 摸清目標區域貽貝等海洋貝類中PSTs基礎風險規律和變化過程, 闡明貽貝體內PSTs風險形成的內源過程及調控機理, 比較并評估不同區域貽貝中PSTs風險大小, 并據此建立區域性PSTs風險防控技術, 提高我國貽貝中PSTs風險的主動防控能力, 保障消費者健康安全和產業可持續發展。
[1] 于仁成, 羅璇. 我國近海有毒藻和藻毒素的研究現狀與展望[J]. 海洋科學集刊, 2016, 51(1): 155-166.Yu Rencheng, Luo Xuan. Status and research perspectives on toxic algae and phycotoxins in the coastal waters of China[J]. Studia Marina Sinica, 2016, 51(1): 155-166.
[2] 李兆永, 陳軍輝, 王帥, 等. 麻痹性貝毒素電噴霧質譜負離子模式分析特征[J]. 質譜學報, 2014, 35(1): 8-15.Li Zhaoyong, Chen Junhui, Wang Shuai, et al. Ms characteristic of paralytic shellfish poisoning toxins detected by electrospray ionization mass spectrometry in negative ion mode[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(1): 8-15.
[3] Visciano P, Schirone M, Berti M, et al. Marine biotoxins: occurrence, toxicity, regulatory limits and reference methods[J]. Front Microbiol, 2016, 7(10): 1-10.
[4] Wang D, Zhang S, Zhang Y, et al. Paralytic shell-fish toxin biosynthesis in cyanobacteria and dinoflagellates: a molecular overview[J]. Journal of Proteomics, 2016, 135: 132-140.
[5] 王艷, 黃琳, 顧海峰, 等. 中國渤海海域甲藻孢囊的種類多樣性和生態地理分布[J]. 植物學報, 2012, 47(2): 125-132. Wang Yan, Huang Lin, Gu Haifeng, et al. Species diversity and eco-geographical distribution of dinofla-gellate cysts in the Bohai sea, China[J]. Chinese Bulletin of Botany, 2012, 47(2): 125-132.
[6] 翟毓秀, 郭萌萌, 江艷華, 等. 貝類產品質量安全風險分析[J]. 中國漁業質量與標準, 2020, 10(4): 1-25.Zhai Yuxiu, Guo Mengmeng, Jiang Yanhua, et al. Analysis on the quality and safety risks of shellfish products[J]. China Fishery Quality and Standards, 2020, 10(4): 1-25.
[7] 張亞亞, 閆國旺, 吳海燕, 等. 基于SPE與SPATT的水體中麻痹性貝類毒素檢測方法構建與應用[J]. 海洋與湖沼, 2020, 51(2): 298-306. Zhang Yaya, Yan Guowang, Wu Haiyan, et al. Establishment and application of detection methods to paralytic shellfish poisoning in water based on SPE and SPATT methods[J]. Oceanologia et Limnologic Sinica, 2020, 51(2): 298-306.
[8] Hong N H, Jia L L, Shou E L, et al. Simultaneous determination of twelve paralytic shellfish poisoning toxins in bivalve molluscs by UPLC-MS/MS and its applications to a food poisoning incident[J]. Toxicon, 2019, 6(11): 1-16.
[9] 黃宏南, 張錦宏, 李海杰, 等. 漳州市2018—2019年沿海海域貝類樣品毒素監測結果分析[J]. 海峽預防醫學雜志, 2020, 26(3): 12-15.Huang Hongnan, Zhang Jinhong, Li Haijie, et al. Analysis on toxin monitoring result of shellfish samples in coastal waters in Zhangzhou city, 2018—2019[J]. Strait Journal of Preventive Medicine, 2020, 26(3): 12-15.
[10] Isabel L D C, Ana P, Ines R, et al. Paralytic shellfish poisoning due to ingestion of contaminated mussels: a 2018 case report in Caparica (Portugal)[J]. Toxi-con: X, 2019, 4(2): 10-17.
[11] Costa P, Robertson A, Quilliam M. Toxin profile of(dinophyceae) from the Portuguese coast, as determined by liquid chromatography tandem mass spectrometry[J]. Marine Drugs, 2015, 13(4): 2046-2062.
[12] Regueiro J, Negreira N, Carreira C A, et al. Dietary exposure and neurotoxicity of the environmental free and bound toxin β-N-methylamino-l-alanine[J]. Food Research International, 2017, 100(3): 1-13.
[13] 張亞亞. 秦皇島貽貝增殖區麻痹性貝類毒素的源頭解析與監控預警技術研究[D]. 連云港: 江蘇海洋大學, 2020.Zhang Yaya. Source analysis and forecasting technology of paralytic shellfish toxins in mussels culture area of Qinhuangdao[D]. Lianyungang: Jiangsu Ocean University, 2020.
[14] Degger N, Chiu J, Beverly, et al. Heavy metal contamination along the China coastline: a comprehensive study using artificial mussels and native mussels[J]. Journal of Environmental Management, 2016, 180: 238-246.
[15] Ikkere L E, Perkons I, Sire J, et al. Occurrence of polybrominated diphenyl ethers perfluorinated compounds and nonsteroidal anti-inflammatory drugs in freshwater mussels from Latvia[J]. Chemosphere, 2018, 213: 507-516.
[16] Riani E, Cordova M R, Arifin Z. Heavy metal pollution and its relation to the malformation of green mussels cultured in muara kamal waters, Jakarta Bay, Indonesia[J]. Marine Pollution Bulletin, 2018, 133: 664-670.
[17] Yap C K, Cheng W H, Karami A, et al. Health risk assessments of heavy metal exposure via consumption of marine mussels collected from anthropogenic sites[J]. Science of the Total Environment, 2016, 553: 285-296.
[18] Chmist J, Szoszkiewicz K, Dro?d?yński D. Behavioural responses offreshwater mus-sels to pesticide contamination[J]. Archives of Enviro-nmental Contamination and Toxicology, 2019, 77(3): 432-442.
[19] Milun V, Grgas D, Dragi?evi? T L. Assessment of PCB and chlorinated pesticide accumulation in mussels at Ka?tela bay (eastern Adriatic)[J]. Science of The Total Environment, 2016, 562: 115-127.
[20] Freitas R, Coppola F, Costa S, et al. The influence of temperature on the effects induced by triclosan and diclofenac in mussels[J]. Science of The Total Environment, 2019, 663: 992-999.
[21] Riisgard H U, Bottiger L, Pleissner D. Effect of salinity on growth of mussels,, with special reference to Great Belt (Denmark)[J]. Open Journal of Marine Science, 2012, 2(4): 167-176.
[22] 梁玉波, 李冬梅, 姚敬元, 等. 中國近海藻毒素及有毒微藻產毒原因種調查研究進展[J]. 海洋與湖沼, 2019, 50(3): 511-524.Liang Yubo, Li Dongmei, Yao Jinyuan, et al. Progresses in investigation and research on phycotoxins and toxic microalgaes in the coastal waters of China[J]. Oceanologia et Limnologic Sinica, 2019, 50(3): 511- 524.
[23] 陳建華, 于仁成, 孔凡洲, 等. 北黃海海域蝦夷扇貝體內脂溶性藻毒素分析[J]. 海洋與湖沼, 2014, 45(4): 855-863.Chen Jianhua, Yu Rencheng, Kong Fanzhou, et al. Detection of lipophilic phycotoxin in Patinopecten yessoensis in the northern Yellow Sea[J]. Oceanologia et Limnologic Sinica, 2014, 45(4): 855-863.
[24] 時文博, 高麗娜, 韓現芹, 等. 天津市售主要經濟貝類中麻痹性貝類毒素污染現狀及特征分析[J]. 河北漁業, 2020, 10(2): 29-33. Shi Wenbo, Gao Lina, Han Xianqin, et al. Analysis of pollution status and composition characteristics of PSP in main economic shellfish sold in Tianjin[J]. Hebei Fisheries, 2020, 10(2): 29-33.
[25] 于姬. 北黃海蝦夷扇貝體內麻痹性貝毒研究[D]. 大連: 大連海事大學, 2009. Yu Ji. Study of paralytic shellfish poisoning in Patino-pecten yessoensis from the northern Yellow Sea[D]. Dalian: Dalian Maritime University, 2009.
[26] 彭志蘭, 羅海軍, 王維潔, 等. 舟山海域麻痹性貝類毒素污染情況及其2種檢測方法比較[J]. 食品安全質量檢測學報, 2017, 8(4): 1436-1440. Peng ZhiLan, Luo Haijun, Wang Weijie, et al. Investigation of paralytic shellfish poison in waters of Zhoushan and comparison of 2 detection methods[J]. Journal of Food Safety and Quality, 2017, 8(4): 1436- 1440.
[27] 張添林, 陳錦鐘, 洪舒萍, 等. 食物中毒一起麻痹性貝類毒素引起的食源性疾病暴發事件調查[J]. 中國食品衛生雜志, 2018, 30(4): 445-448. Zhang Tianlin, Chen Jingzhong, Hong Shuping, et al. Investigation of outbreaks of foodborne diseases caused by paralytic shellfish poisoning[J]. Chinese Journal of Food Hygiene, 2018, 30(4): 445-448.
[28] 江濤, 劉智勇, 李燕俊. 麻痹性貝類毒素污染狀況及檢測方法的比對研究[J]. 中國熱帶醫學, 2010, 10(11): 1426-1428.Jiang Tao, Liu Zhiyong, Li Yanjun. Comparative study on contamination status and detection methods of paralytic shellfish toxins[J]. China Tropicalmedicine, 2010, 10(11): 1426-1428.
[29] 張純超. 大亞灣貝類毒素特征研究[D]. 青島: 中國海洋大學, 2008. Zhang Chunchao. The characteristics of paralytic shellfish toxin and diarrhetic shellfish toxin in Daya bay[D]. Qingdao: Ocean University of China, 2008.
[30] 江天久, 包財, 雷芳, 等. 廣東東部沿海麻痹性貝類毒素成分特征分析[J]. 中國水產科學, 2010, 17(1): 119-127. Jiang Tianjiu, Bao Cai, Lei Fang, et al. Analysis on the profiles of paralytic shellfish poisoning in shellfish collected from eastern coast of Guangdong[J]. Journal of Fishery Sciences of China, 2010, 17(1): 119-127.
[31] 過鋒, 崔毅, 陳碧鵑, 等. 膠州灣貝類體內有毒有害物質污染狀況分析[J]. 漁業科學進展, 2011, 32(6): 115-120. Guo Feng, Cui Yi, Chen Bijuan, et al. Analysis of toxic and harmful substances in shellfish of Jiaozhou Bay[J]. Progress in Fishery Science, 2011, 32(6): 115- 120.
[32] 林祥田, 張明生, 王志堅, 等. 連云港海州灣麻痹性貝類毒素中毒分析[J]. 中國食品衛生雜志, 2005, 17(3): 243-246. Lin Xiangtian, Zhang Mingsheng, Wang Zhijian, et al. Analysis of poisoning characteristics of paralytic shellfish poison in Haizhou bay of Lianyungang, Jiangsu province[J]. Chinese Journal of Food Hygiene, 2005, 17(3): 243-246.
[33] 馬丹. 渤海灣天津海域貝類質量調查及活性研究[D]. 天津: 天津大學, 2015. Ma Dan. Research on seashells quality and activity in Tianjin nearshore waters of the Bohai gulf in China[D]. Tianjin: Tianjin University, 2015.
[34] 錢蓓蕾, 徐捷, 王媛, 等. 上海市售貝類產品中麻痹性貝類毒素污染狀況調查及其評價[J]. 食品安全質量檢測學報, 2012, 3(2): 89-92.Qian Beilei, Xu Jie, Wang Yuan, et al. Investigation and evaluation of paralytic shellfish poison in shellfish collected from aquatic product wholesale market in Shanghai[J]. Journal of Food Safety and Quality, 2012, 3(2): 89-92.
[35] 馬元慶, 唐學璽, 劉義豪, 等. 山東半島近海貝類污染狀況調查與評價[J]. 海洋環境科學, 2009, 28(5): 562-565.Ma Yuanqing, Tang Xuexi, Liu Yihao, et al. Investigation and assessment on pollution situation of seashells in Shandong peninsula coast[J]. Marine Environmental Science, 2009, 28(5): 562-565.
[36] 夏遠征, 王雙雙, 辛丘巖, 等. 大連海域貝類麻痹性貝毒的污染狀況調查與分析[J]. 食品與機械, 2010, 26(2): 54-56. Xia Yuanzheng, Wang Shuangshuang, Xin Qiuyan, et al. Pollution survey of paralytic shellfish poison (PSP) from aquaculture zones of Changhai’s sea area in Dalian[J]. Journal of Food and Machinery, 2010, 26(2): 54-56.
[37] 劉曉麗. 殼聚糖及其衍生物脫除牡蠣中麻痹性貝類毒素的研究[D]. 湛江: 廣東海洋大學, 2011. Liu Xiaoli. Studies on chitosan and its derivatives adsorption for paralytic shellfish poisoning (PSP) in ostrea rivularis could[D]. Zhanjiang: Guangdong Ocean University, 2011.
[38] 沈和定, 付金花, 冉福. 麻痹性貝毒在文蛤體內的累積及凈化技術研究[J]. 海洋科學, 2011, 35(7): 45-50. Shen Heding, Fu Jinhua, Ran Fu. Accumulation and detoxification of paralytic shellfish poison(PSP) in hard clam Meretrix[J]. Marine Sciences, 2011, 35(7): 45-50.
[39] Gracia V, Tobke J L, Montoya N G, et al. Experimental exposure of the mussel(d’ Orbigny 1842) to the dinoflagellatefrom Argentine Patagonia[J]. Ecotoxicology, 2020, 29(2): 226-235.
[40] Sekiguchi K, Sato S, Kaga S, et al. Accumulation of paralytic shellfish poisoning toxins in bivalves and an ascidian fed oncells[J]. Fisheries Science, 2001, 67(2): 301-305.
[41] 邴曉菲. 作為餌料組成亞歷山大藻對扇貝質量安全形成的影響[D]. 上海: 上海海洋大學, 2017. Bing Xiaofei. Composite effects of Alexandrium spp. as nutritional composition quality and safety of scallop Chlamys farreri[D]. Shanghai: Shanghai Ocean University, 2017.
[42] 邱江兵. 雙殼貝類對麻痹性貝毒的代謝轉化及其生理生化響應[D]. 青島: 中國海洋大學, 2014. Qiu Jiangbing. Metabolic transformation of paralytic shellfish toxins by bivalve molluscs and their physiological and biochemical responses[D]. Qingdao: Ocean University of China, 2014.
[43] Shumway S, Cucci T L. The effects of the toxic dinoflagellateon feeding and behavior of bivalve molluscs[J]. Aquatic Toxicol, 1987, 2(10): 9-27.
[44] Choi M C, Hsieh D P H, Lam P K S, et al. Field depuration and biotransformation of paralytic shellfish toxins in scallopand green-lipped mussel[J]. Marine Biology, 2003, 143(5): 927-934.
[45] 顏天, 傅萌, 李鈞, 等. 麻痹性貝毒PSP在紫貽貝體內的累積、轉化與排出[J]. 海洋與湖沼, 2001, 32(4): 420-427.Yan Tian, Fu meng, Li Jun, et al. Accumulation, trans-formation and elimination of PSP in Mytilus edulis[J]. Oceanologia et Limnologic Sinica, 2001, 32(4): 420-427.
[46] 陳光. 塔瑪亞歷山大藻所產麻痹性貝毒(PSP)在菲律賓蛤仔體內的累積與排出[D]. 青島: 國家海洋局第一海洋研究所, 2008.Chen Guang. Accumulation and elimination of paralytic shellfish poisoning (PSP) from Alexandrium tamatense in Venerupis philippinaram[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2008.
[47] Bricelj V M, Connell L, Konoki K, et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP[J]. Nature, 2005, 434(7): 763-767.
[48] Braga A C, Camacho C, Marques A, et al. Combined effects of warming and acidification on accumulation and elimination dynamics of paralytic shellfish toxins in mussels[J]. Environmental Research, 2018, 164: 647-654.
[49] Anestis A, Lazou A, P?rtner H O, et al. Beha-vioral, metabolic, and molecular stress responses of marine bivalveduring long-term acclimation at increasing ambient temperature[J]. Integrative and Comparative Physiology, 2007, 293(2): 911- 921.
[50] Dallas L J, Bean T P, Turner A, et al. Exposure to tritiated water at an elevated temperature: genotoxic and transcriptomic effects in marine mussels[J]. Journal of Environmental Radioactivity, 2016, 164: 325-336.
[51] Filgueira R, Guyondet T, Comeau L A, et al. Bivalve aquaculture-environment interactions in the context of climate change[J]. Global Change Biology, 2016, 22(12): 3901-3913.
[52] Lischka S, Büdenbender J, Boxhammer T, et al. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelledmortality shell degradation an shell growth[J]. Biogeosciences, 2011, 8(4): 919-932.
[53] Schulte E H. Influence of algal concentration and temperature on the filtration rate of[J]. Marine Biology, 1975, 30(4): 331-341.
[54] Almada P, Villela C. The effects of reduced salinity on the shell growth of small[J]. Marine Biological Association of the United Kingdom, 1984, 64(1): 171-182.
[55] Gruffydd L D, Huxley R, Crisp D J. The reduction in growth ofin fluctuating salinity regimes measured using laser diffraction patterns and the exaggeration of this effect by using tap water as the diluting medium[J]. Marine Biological Association of the United Kingdom, 1984, 64(2): 401-409.
[56] Maar M, Saurel C, Landes A, et al. Growth potential of blue mussels () exposed to different salinities evaluated by a dynamic energy budget model[J]. Journal of Marine Systems, 2015, 148: 48-55.
[57] Riisgard H U, Lüskow F, Pleissner D, et al. Effect of salinity on filtration rates of musselswith special emphasis on dwarfed mussels from the low-saline central Baltic sea[J]. Helgoland Marine Research, 2013, 67(3): 591-598.
[58] Riisgard H U, Lundgreen K, Larsen P S. Potential for production of mini-mussels in Great Belt (Denmark) evaluated on basis of actual and modeled growth of young mussels[J]. Aquaculture International, 2014, 22(2): 859-885.
[59] Riisgard H U, Mulot M, Merino L, et al. Effect of salinity changing rates on filtration activity of mussels from two sites within the Baltic hybrid zone: the brackish Great Belt (Denmark) and the low saline central Baltic sea[J]. Open Journal of Marine Science, 2014, 4(2): 101-109.
[60] Che Y, Ding L, Qiu J, et al. Conversion and stability of new metabolites of paralytic shellfish toxins under different temperature and pH conditions[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1427- 1435.
[61] Hu M, Li L, Sui Y, et al. Effect of pH and temperature on antioxidant responses of the thick shell mussel[J]. Fish & Shellfish Immunology, 2015, 46(2): 573-583.
[62] Parker L, Ross P, O'Connor W, et al. Predicting the response of molluscs to the impact of ocean acidification[J]. Biology, 2013, 2(2): 651-692.
[63] Basile M, Christos O, Andreas P, et al. Effects of long-term moderate hypercapnia on acid base balance and growth rate in marine mussels[J]. Marine Ecology Progress Series, 2005, 293: 109-118.
[64] Capelle J, Stralen M, Wijsman J, et al. Population dynamics of subtidal blue musselsand the impact of cultivation[J]. Aquaculture Environment Interactions, 2017, 9: 155-168.
[65] 黃德強, 暨衛東, 高亞輝, 等. 翡翠貽貝對塔瑪亞歷山大藻的攝食及毒素積累的初步研究[J]. 臺灣海峽, 2003, 22(4): 426-430. Huang Deqiang, Ji Weidong, Gao Yahui, et al. Primary study on grazing rate of Perna viridis on Alexandrium tamarense and its PSP accumulation[J]. Journal Oceanography in Taiwan Strait, 2003, 22(4): 426-430.
[66] Lee J S, Jeon J K, Myung S H, et al. Paralytic shellfish toxins in the musseland dino-flagellatefrom Jinhae bay, Korea[J]. Korean Journal of Fisheries and Aquatic Sciences, 1992, 25(2): 144-150.
[67] 劉仁沿, 劉磊, 梁玉波, 等. 我國近海有毒微藻及其毒素的分布危害和風險評估[J]. 海洋環境科學, 2016, 35(5): 787-800. Liu Renyan, Liu Lei, Liang Yubo, et al. The distribution, impacts and risks of toxic microalgae and phycotoxins in China[J]. Marine Environmental Science, 2016, 35(5): 787-800.
[68] 趙俊梅, 方建光, 包振民, 等. 3種濾食性貝類對塔瑪亞歷山大藻的攝食研究[J]. 海洋水產研究, 2004, 25(4): 17-22. Zhao Junmei, Fang Jianguang, Bao Zhenmin, et al. Filter-feeding of three bivalves on Alexandrium tamarense[J]. Marine Fisheries Research, 2004, 25(4): 17-22.
[69] Negri A P, Jones G J. Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacteriumby the freshwater mussel[J]. Toxicon, 1995, 33(5): 667-678.
[70] 田華. 麻痹性貝毒的累積、轉化、排出過程及預警診斷指標研究[D]. 青島: 中國海洋大學, 2009. Tian Hua. Study on accumulation, transformation and depuration and diagnoses target of paralytic shellfish poisoning toxins[D]. Qingdao: Ocean University of China, 2009.
[71] Dean K J, Hatfield R G, Lee V, et al. Multiple new paralytic shellfish toxin vectors in offshore north sea benthos, a deep secret exposed[J]. Marine Drugs, 2020, 18(8): 400-412.
[72] Tse S, Lee F, Mak D, et al. Production of paralytic shellfish toxins (PSTs) in toxicis intertwined with photosynthesis and energy production[J]. Toxins, 2020, 12(8): 477-487.
[73] Turner A D, Tarnovius S, Hatfield R G, et al. Application of six detection methods for analysis of paralytic shellfish toxins in shellfish from four regions within Latin America[J]. Marine Drugs, 2020, 18(12): 6-16.
[74] Kim H, Shin I. Comparison of paralytic shellfish toxin profiles ofand blue mussel () in Korea[J]. Food Science and Biotechnology. 2015, 24(2): 751-756.
[75] Wiese M, D Agostino P M, Mihali T K, et al. Neurotoxic alkaloids: saxitoxin and its analogs[J]. Marine Drugs, 2010, 8(7): 2185-2211.
[76] Botelho M J, Marques F, Freitas R, et al. Paralytic shellfish toxin profiles in mussel, cockle and razor shell under post-bloom natural conditions: evidence of higher biotransformation in razor shells and cockles[J]. Marine Environmental Research, 2020, 154: 104839.
[77] Vale P. Metabolites of saxitoxin analogues in bivalves contaminated by[J]. Toxicon, 2010, 55: 162-165.
[78] Cho Y, Ogawa N, Takahashi M, et al. Purification and characterization of paralytic shellfish toxin- transforming enzyme, sulfocarbamoylase Ⅰ, from the Japanese bivalve[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2008, 1784(9): 1277-1285.
[79] O’Neill K, Musgrave I F, Humpage A. Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: a review[J]. Environmental Toxicology and Pharmacology, 2016, 48: 7-16.
[80] Goya A B, Tarnovius S, Hatfield R G, et al. Paralytic shellfish toxins and associated toxin profiles in bivalve mollusc shellfish from Argentina[J]. Harmful Algae, 2020, 99: 101910.
[81] Botelho M J, Vale C, Ferreira J G. Seasonal and multi-annual trends of bivalve toxicity by PSTs in Portuguese marine waters[J]. Science of the Total Environment, 2019, 664: 1095-1106.
[82] Ding L, Qiu J, Li A. Proposed biotransformation pathways for new metabolites of paralytic shellfish toxins based on field and experimental mussel samples[J]. Journal of Agricultural and Food Chemistry, 2017, 65(27): 5494-5502.
[83] Lin H, Cho Y, Yashiro H, et al. Purification and characterization of paralytic shellfish toxin transforming enzyme from[J]. Toxicon, 2004, 44(6): 657-668.
[84] 卞中園. 麻痹性貝毒在牡蠣體內蓄積、分布、轉化以及羧甲基殼聚糖的脫[D]. 湛江: 廣東海洋大學, 2013. Bian Zhongyuan. Study on the accumulation, distribution, transformation for paralytic shellfish poisoning and the depuration of CM-chitosan in oyster[D]. Zhanjiang: Guangdong Ocean University, 2013.
[85] 鄒迎麟, 朱明遠, Hall S. 兩種亞歷山大藻產毒過程和毒素特征研究[J]. 黃渤海海洋, 2001, 19(3): 65-70. Zou Yinglin, Zhu Mingyuan, Hall S. Production and characteristics of paralytic shellfish toxins in two species of Alexandrium[J]. Journal of Oceanography of Huanghai&Bohai Seas, 2001, 19(3): 65-70.
[86] Galimany E, Sunila I, Hégaret H, et al. Pathology and immune response of the blue mussel () after an exposure to the harmful dinoflagellate[J]. Harmful Algae, 2008, 7(5): 630-638.
[87] Kotaki Y, Tajiri M, Oshima Y, et al. Identification of a calcareous red alga as the primary source of paralytic shellfish toxins in coral reef crabs and gastropods[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1983, 49(2): 283-286.
[88] Liu Y, Li L, Zheng L, et al. Antioxidant responses of triangle sail musselexposed to harmful algaeand high pH[J]. Chemosphere, 2020, 243: 125-241.
[89] Qiu J, Ma F, Fan H, et al. Effects of feeding, a paralytic shellfish toxin producer, on antioxidant enzymes in scallops () and mussels ()[J]. Aquaculture, 2013, 396(3): 76-81.
[90] Epp O, Ladenstein R, Wendel A, et al. The refined structure of the selenoenzyme glutathione pero-xidase at 0.2nm resolution[J]. European Journal of Bio-chemistr, 1983, 133(1): 51-69.
[91] Pousse E, Sainte M J, Alunno B M, et al. Sources of paralytic shellfish toxin accumulation varia-bility in the Pacific oyster[J]. Toxicon, 2018, 144: 14-22.
[92] Bianchi V A, Langeloh H, Tillmann U. Separate and combined effects of neurotoxic and lytic compounds ofstrains onfeeding activity and hemocyte function[J]. Fish & Shellfish Immunology, 2019, 84: 414-422.
Research progress on the accumulation and metabolism of paralytic shellfish toxin in mussels
FAN Li-qiang1, 2, ZHENG Guan-chao2, WU Hai-yan2, GUO Meng-meng2, LU Xia1, LI Yu1, TAN Zhi-jun2, 3
(1. School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China; 2. Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, P. R. China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3. Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China)
Poisoning with paralysis shellfish toxins (PSTs) can cause death in shellfish, other fish, and other marine organisms as well as hamper the marine ecology and human health. Mussels are highly accumulative and serve as indicators of PSTs in foreign countries. In recent years, several cases of PST poisoning by mussel consumption in China have become the focus of safety attention. Therefore, understanding the mechanism of risk formation is essential and urgent. This study evaluates the risk degree of PSTs in offshore mussels and other shellfishes in China and the accumulation effect of mussels on PSTs from different toxigenic alga sources, analyzes the influence of environmental factors on the accumulation and metabolism, and explores in depth the specificity of mussel accumulation and metabolism. Furthermore, focusing on the expression regulation process of the mussel metabolic stage, our study clarifies the influencing factors, transformation functions, and modes. In future studies, we aim to focus on understanding the basic risk rule and change process of PSTs in mussels as well as other marine shellfish in certain target areas of China and establish regional risk prevention and control technology for active prevention and control of PST risk in mussels of China. This will contribute positively and significantly toward protecting consumer health and the marine ecology.
mussels; accumulation and metabolism; immune; risk assessment
Nov. 2, 2020
S917
A
1000-3096(2021)04-0201-12
10.11759/hykx20201102003
2020-11-02;
2020-12-25
國家重點研發計劃項目(2017YFC1600701); 國家自然科學基金面上項目(31772075, 32072329); 2019江蘇省研究生科研創新項目(KYCX19_2282)
[National Key R&D Program of China, No.2017YFC1600701; The National Natural Science Foundation of China, No.31772075, 32072329; 2019 Jiangsu Graduate Scientific Research Innovation Program, No.KYCX19_ 2282]
范禮強(1996—), 男, 在讀研究生, 研究方向為水產品質量與安全, E-mail: liqiangfan0@gmail.com; 譚志軍(1978—),通信作者, 研究員, 主要從事貝類毒素安全檢測及評價研究, E-mail: tanzj@ysfri.ac.cn
(本文編輯: 趙衛紅)