王兆文,曹俊輝,袁 波,王宇洲,呂 嵩,成曉北
不同微細(xì)水核直徑的摻水乳化柴油制備方法和影響因素
王兆文,曹俊輝,袁 波,王宇洲,呂 嵩,成曉北
(華中科技大學(xué),能源與動(dòng)力工程學(xué)院,武漢 430074)
隨著燃油車和重型農(nóng)用機(jī)械數(shù)量的增加,石油資源消耗急劇上升,摻水乳化柴油作為一種新型可替代燃料受到了廣泛關(guān)注。水核直徑對(duì)摻水乳化柴油的微爆特性影響較大,但目前缺乏組分不變下的目標(biāo)水核直徑摻水乳化柴油的制備方法和適宜的水核直徑表征方法。該研究基于CV模型,開(kāi)發(fā)了適合水核微觀結(jié)構(gòu)的圖像識(shí)別程序;創(chuàng)新性地提出采用對(duì)數(shù)正態(tài)分布函數(shù)擬合和表征水核直徑的分布。結(jié)果表明,相對(duì)于索特平均直徑,基于對(duì)數(shù)正態(tài)分布函數(shù)擬合的表征參數(shù)可以更準(zhǔn)確地描述摻水乳化柴油內(nèi)部水核分布情況。隨后,基于正交設(shè)計(jì)方法,通過(guò)調(diào)節(jié)超聲波乳化的乳化時(shí)間、乳化功率和超聲波頻率參數(shù)實(shí)現(xiàn)了組分不變情況下不同水核直徑的摻水乳化柴油的制備;并基于新的表征參數(shù),研究了制備參數(shù)對(duì)摻水乳化柴油中水核直徑的影響規(guī)律以及敏感性等特征。研究表明:超聲波頻率、乳化功率和乳化時(shí)間3個(gè)制備因素對(duì)最大直徑的極差為0.744、2.880、1.038,對(duì)分布標(biāo)準(zhǔn)差的極差分別為0.028、0.120、0.034,因此各因素的影響優(yōu)先級(jí)分別為:乳化功率、乳化時(shí)間、超聲波頻率。隨著乳化功率、乳化時(shí)間的增加,乳化效果明顯增強(qiáng),摻水乳化柴油中水核直徑的擬合最大值與分布標(biāo)準(zhǔn)差逐漸減小,使得摻水乳化柴油中水核直徑既小又平均,而超聲波頻率的影響則不明顯;此外當(dāng)水核直徑及分布標(biāo)準(zhǔn)差減少到一定值后,增加乳化功率比增長(zhǎng)乳化時(shí)間對(duì)摻水乳化柴油水核的細(xì)化影響更大,該研究可為乳化柴油制備水供參考。
柴油;參數(shù);乳化液;水核直徑;表征參數(shù);正交設(shè)計(jì)
隨著燃油車和農(nóng)用重型機(jī)械數(shù)量的增加,石油資源的消耗急劇上升[1],并且產(chǎn)生大量排放污染物,嚴(yán)重污染了大氣環(huán)境,不利于人們的身心健康[2]。為解決緊缺的能源問(wèn)題和嚴(yán)峻的環(huán)境問(wèn)題,發(fā)展高效清潔的發(fā)動(dòng)機(jī)燃燒技術(shù)刻不容緩,而尋求新型替代燃料[3]正是有效的解決方案之一。
柴油機(jī)因其熱效率較高、可靠性較好受到廣泛關(guān)注。然而柴油機(jī),特別是農(nóng)用柴油機(jī),其顆粒物(Particulate Matter,PM)、氮氧化物(Nitrogen Oxide,NOx)、和未燃碳?xì)浠衔铮℉ydrocarbon,HC)等[4]污染嚴(yán)重。研究表明,燃燒摻水乳化柴油具有較好的節(jié)能減排潛力,可以在提高發(fā)動(dòng)機(jī)熱效率的同時(shí)顯著降低顆粒物和氮氧化物的排放水平[5-7]。

為了獲得不同水核直徑的摻水乳化油,目前主要有兩種制備方法,一類通過(guò)調(diào)整乳化液的組分和含量來(lái)制備,一類通過(guò)不同配制方法和配制工藝來(lái)制備。袁凱等[16]通過(guò)改變含水率來(lái)制備不同水核直徑的摻水乳化柴油,發(fā)現(xiàn)隨著含水率的增加,乳化油內(nèi)水核直徑整體增大,且直徑分布范圍變寬,分布更不均勻。Mura[17]保持含水率相同(30%)而調(diào)節(jié)乳化劑含量,制備了3種不同水核直徑大小的乳化油,并采用熱板法完成乳化油微爆實(shí)驗(yàn)。Preetika等[18]保持乳化劑濃度一定,通過(guò)選擇不同復(fù)合乳化劑種類,以及乳化油的親水親油平衡值HLB來(lái)制備不同水核直徑的乳化油。通過(guò)上述制備方法來(lái)制備不同直徑的水核,其微爆規(guī)律不僅包含水核直徑的影響,也包含組分變化的影響,導(dǎo)致研究結(jié)論不準(zhǔn)確也不科學(xué)。此外,由于以往研究對(duì)水核直徑分布的不重視,水核直徑對(duì)微爆的影響研究中,研究者一般采用索特平均直徑(Sauter Mean Diameter,SMD)這個(gè)平均值來(lái)籠統(tǒng)地表示乳化油的水核直徑[19-21]。然而即使乳化油水核直徑的SMD相同但分布不同,其微爆特性也不盡相同,故而,僅用SMD作為表征參數(shù)表征乳化油的水核直徑是不完善的,需要尋求更準(zhǔn)確的表征參數(shù)。
為了嘗試解決上述問(wèn)題,本文基于相同組分,通過(guò)參數(shù)可調(diào)的超聲波乳化系統(tǒng)制備出不同水核直徑的摻水乳化柴油。首先基于CV模型,開(kāi)發(fā)了適合水核微觀結(jié)構(gòu)的圖像識(shí)別系統(tǒng),實(shí)現(xiàn)摻水乳化柴油微觀結(jié)構(gòu)的圖像處理和數(shù)學(xué)統(tǒng)計(jì)。通過(guò)摻水乳化柴油中水核直徑的分布規(guī)律,本文創(chuàng)新地提出采用對(duì)數(shù)正態(tài)分布函數(shù)擬合乳化油的水核直徑分布情況,并提出了適合摻水乳化柴油水核直徑分布規(guī)律的新表征參數(shù)。同時(shí),以新表征參數(shù)為特征參數(shù),基于正交設(shè)計(jì)方法,探索了乳化時(shí)間、乳化功率和頻率參數(shù)對(duì)摻水乳化柴油水核直徑的影響規(guī)律,解釋了這3個(gè)乳化參數(shù)對(duì)水核直徑的影響優(yōu)先級(jí)。擬通過(guò)上述研究,根據(jù)目標(biāo)水核直徑需求,快速找到適宜的乳化油制備參數(shù)。
摻水乳化柴油制備設(shè)備為一參數(shù)可調(diào)的超聲乳化系統(tǒng),具體包括超聲波控制系統(tǒng)、攪拌系統(tǒng)和超聲波輸出系統(tǒng),系統(tǒng)構(gòu)造如圖1所示。超聲波控制系統(tǒng)用于控制超聲波的乳化時(shí)間、乳化功率和超聲波頻率等參數(shù),以及控制乳化油的溫度,防止出現(xiàn)溫度過(guò)高導(dǎo)致混合液中水分蒸發(fā)而改變了乳化油的組分,以及乳化劑活性降低等問(wèn)題。攪拌系統(tǒng)通過(guò)攪拌器控制開(kāi)關(guān)控制,用于在宏觀上攪拌乳化液。超聲波輸出系統(tǒng)將超聲波傳遞至乳化油制液罐體內(nèi)的超聲波換能器,用于進(jìn)行混合溶液的微觀攪拌和乳化,使乳化油的混合更加充分、均勻,避免出現(xiàn)局部區(qū)域組分和液滴直徑分布不均勻現(xiàn)象。
摻水乳化柴油的微觀結(jié)構(gòu),如水核直徑大小和分布等,通過(guò)BK600光學(xué)顯微鏡觀察。光學(xué)顯微鏡頂部有攝像機(jī),與計(jì)算機(jī)相連接,用于拍攝并傳輸所觀察的乳化油微觀結(jié)構(gòu)圖像。獲得的摻水乳化柴油水核直徑分布如圖2所示。
由圖可知,摻水乳化柴油的微觀結(jié)構(gòu)和分布都非常復(fù)雜,并且具有一定的隨機(jī)性。傳統(tǒng)上普遍采用人工識(shí)別[22-24]的方法來(lái)識(shí)別和統(tǒng)計(jì)乳化油微觀結(jié)構(gòu)中的水核直徑,但人工識(shí)別方法耗時(shí)長(zhǎng)、精確度差、識(shí)別不全面。因此目前有研究[25-27]提出了自動(dòng)識(shí)別水核邊界的方法,但由于離散水核邊界與連續(xù)相液體對(duì)比度不大,因此并不能準(zhǔn)確的識(shí)別水核邊界。本文基于CV模型,開(kāi)發(fā)了提取水核微觀結(jié)構(gòu)并計(jì)算其直徑的MATLAB程序,可以自動(dòng)、清晰地得到水核直徑的分布。
CV模型[28]是由Chan和Vese提出的一種基于曲線演化、Mumford–Shah函數(shù)[29]和水平集[30]的活動(dòng)輪廓模型,用來(lái)檢測(cè)圖像中的目標(biāo)邊界,其基本思想是求取能量函數(shù)的最小化,具體如下:
定義一個(gè)能量函數(shù)

圖4為所拍攝乳化油原圖及圖像處理過(guò)程,從左至右分別代表原始水核微觀結(jié)構(gòu)圖、提取邊界后的水核微觀結(jié)構(gòu)圖和填充邊界后的水核微觀結(jié)構(gòu)圖像。最終根據(jù)填充后水核的面積計(jì)算出水核的等效直徑。
基于本文中的圖像處理方法,可識(shí)別直徑最小值為0.6m的細(xì)微粒徑,統(tǒng)計(jì)得到的水核直徑分布如圖5所示。由圖5的概率密度直方圖可知,通過(guò)超聲乳化制備的摻水乳化柴油中,小直徑水核出現(xiàn)的概率密度較大,而大直徑水核出現(xiàn)的概率密度較小,導(dǎo)致不同制備方法下水核直徑的平均值變化不大,但直徑分布相差較大,并且分布規(guī)律不對(duì)稱,使得采用SMD統(tǒng)計(jì)無(wú)法表征水核直徑的分布規(guī)律,故而SMD不適合作為水核直徑分布的表征參數(shù)。鑒于不同組分、不同乳化方法下的水核直徑均呈現(xiàn)為細(xì)小水核更多,大直徑水核相對(duì)較少的分布特征,與對(duì)數(shù)正態(tài)分布特性相近,故而本文提出采用對(duì)數(shù)正態(tài)分布函數(shù)擬合方法表示水核直徑的實(shí)際分布情況。
圖6為對(duì)數(shù)坐標(biāo)系下某一組水核直徑分布統(tǒng)計(jì)曲線和對(duì)數(shù)正態(tài)分布擬合曲線圖。該擬合曲線的擬合決定性系數(shù)達(dá)到0.996 7。故而可以推斷出,乳化油中的水核直徑分布情況符合對(duì)數(shù)正態(tài)分布規(guī)律,可以采用對(duì)數(shù)正態(tài)分布擬合方法表示。

圖7為水核直徑分布的對(duì)數(shù)正態(tài)分布擬合方程在絕對(duì)坐標(biāo)系中的表征曲線與實(shí)際分布的對(duì)比圖。
由圖7可知,在絕對(duì)坐標(biāo)下,水核直徑擬合后的表征曲線與實(shí)際水核直徑分布曲線吻合度高,進(jìn)一步驗(yàn)證了對(duì)數(shù)正態(tài)分布擬合方法的可靠性和新采用的表征參數(shù)的準(zhǔn)確性。
本文的乳化油制備方法中不改變?nèi)榛徒M分,主要改變超聲波系統(tǒng)參數(shù),如乳化時(shí)間、乳化功率和超聲波頻率,來(lái)獲得不同水核直徑的乳化油。為分析乳化時(shí)間、乳化功率和超聲波頻率對(duì)水核直徑的影響規(guī)律以及影響的優(yōu)先級(jí)關(guān)系,本文采用正交試驗(yàn)設(shè)計(jì)方法,設(shè)計(jì)出包含乳化時(shí)間、乳化功率和超聲波頻率的3因素5水平試驗(yàn)方案。各個(gè)因素和水平如表1所示,所設(shè)計(jì)的正交試驗(yàn)表如表2所示。

表1 水平因素的設(shè)計(jì)
本文制備的摻水乳化柴油組分恒定,為含水率30%(簡(jiǎn)稱W30)的摻水乳化柴油,其組分為柴油、蒸餾水、Span80、Op-10,質(zhì)量分別為1 000 、428.6、99 、8.14 g。其中復(fù)合乳化劑的親水親油平衡值HLB取為5.26,此時(shí)乳化柴油穩(wěn)定性較好[21]。

表2 正交設(shè)計(jì)表
根據(jù)乳化油質(zhì)量組分表,按設(shè)計(jì)試驗(yàn)方案設(shè)置相應(yīng)的乳化時(shí)間、乳化功率和超聲波頻率參數(shù),最終獲得25種不同水核直徑特征的摻水乳化柴油。
不同方法配制的含水30%摻水乳化柴油內(nèi)水核直徑表征參數(shù)如表3所示。

表3 試驗(yàn)結(jié)果
通過(guò)極差分析可以確定各因素對(duì)指標(biāo)影響的主次關(guān)系,極差值越大,表明該因素的變化對(duì)指標(biāo)的影響越大,表4為W30各因素直徑擬合最大值極差分析表。

表4 W30各因素直徑擬合最大值極差分析
圖8為各因素直徑最大值和標(biāo)準(zhǔn)差的極差分析。由極差分析圖可知標(biāo)準(zhǔn)差極差值為(0.028)、(0.120)、(0.034),在本文試驗(yàn)中,乳化功率對(duì)摻水乳化柴油中的水核直徑最大值和分布范圍影響最大,明顯強(qiáng)于其他兩個(gè)因素;其次是乳化時(shí)間,超聲波頻率對(duì)水核直徑最大值和分布范圍影響最小。
圖9分別為不同制備參數(shù)下的離散水核直徑最大值和單位能量對(duì)應(yīng)的最大直徑的水平指標(biāo)圖。由圖可知,隨著乳化功率和乳化時(shí)間的增加,最大水核直徑均呈現(xiàn)為減小的趨勢(shì)。分析可知,乳化功率的增加,增加了饋入乳化油中的超聲波能量,促進(jìn)了摻水乳化柴油中連續(xù)相和分散相的破碎;而乳化時(shí)間的增長(zhǎng),等價(jià)于饋入乳化油中的能量增加。故功率和時(shí)間的增加均使超聲波的空化作用和剪切作用效果增強(qiáng),水核破碎的更加完全,從而水核直徑變小。由圖可知,所選頻率范圍內(nèi),超聲波頻率對(duì)最大水核直徑的影響不大,分析認(rèn)為,由于其占空比保持50%不變,頻率的增加,饋入能量不變,故而影響不大。
由圖還可知,乳化功率對(duì)單位能量乳化效果的影響接近線性,而隨著時(shí)間的增長(zhǎng),單位能量對(duì)應(yīng)的最大水核直徑變化值將逐漸減小。這表明當(dāng)水核直徑到達(dá)某個(gè)值后,增長(zhǎng)乳化時(shí)間對(duì)水核直徑的影響逐步衰弱,此時(shí),只能通過(guò)增大功率來(lái)進(jìn)一步細(xì)化水核直徑。即當(dāng)直徑細(xì)化到一定值后,在相同能量饋入情況下,增加功率比增加時(shí)間能更有效地減小水核直徑。
乳化油水核直徑的分布標(biāo)準(zhǔn)差決定水核直徑分布的均勻性,分布標(biāo)準(zhǔn)差越小表明乳化油的水核直徑分布越均勻。圖10為不同制備參數(shù)下的水核直徑分布標(biāo)準(zhǔn)差和單位能量對(duì)應(yīng)的標(biāo)準(zhǔn)差水平指標(biāo)圖。由圖可知,隨著功率和時(shí)間的增加,乳化油水核直徑的分布標(biāo)準(zhǔn)差呈明顯減少的趨勢(shì),而頻率影響不大,進(jìn)一步說(shuō)明了超聲波能量的增加使得乳化油混合更充分,水核直徑分布趨于均勻。
同理,隨著功率增加,單位能量所獲得的標(biāo)準(zhǔn)差范圍逐步減小,乳化效果逐步變好,但影響趨勢(shì)基本不變。而隨著時(shí)間的增加,單位能量所獲得的標(biāo)準(zhǔn)差范圍逐步減小,但影響趨勢(shì)逐步減弱,這與粒徑大小變化規(guī)律基本一致。同樣地,當(dāng)標(biāo)準(zhǔn)差減小到一定值后,增長(zhǎng)乳化時(shí)間對(duì)粒徑分布范圍的影響逐步減弱。此時(shí),需要通過(guò)增大功率來(lái)進(jìn)一步減小粒徑分布范圍,制造出更均勻的摻水乳化柴油。這表明,當(dāng)標(biāo)準(zhǔn)差減小到一定值后,在同等能量下增加功率比增加時(shí)間能更有效地減小粒徑分布范圍。
圖11為不同制備參數(shù)下W30的離散水核直徑分布曲線圖。由于頻率變化對(duì)水核直徑分布基本無(wú)影響,因此由圖11方案20,(制備參數(shù)20 kHz、700 W、30 min)和方案25,(制備參數(shù)24 kHz、700 W、35 min)可知,隨著乳化時(shí)間的增加,水核直徑分布越來(lái)越集中;由圖中方案7,(制備參數(shù)12 kHz、400 W、30 min)和方案20,(制備參數(shù)20 kHz、700 W、30 min)可知,隨著功率增加,水核直徑分布也越來(lái)越集中,并且效果顯著。
基于上述正交試驗(yàn)的研究可知,乳化功率的影響最大,乳化時(shí)間影響次之,并且當(dāng)水核直徑小到某一閾值后,只能通過(guò)增大乳化功率來(lái)進(jìn)一步細(xì)化水核直徑。同時(shí),正交試驗(yàn)也提供了一系列范圍適宜的水核直徑制備參數(shù),可以根據(jù)正交表結(jié)果,通過(guò)不同乳化參數(shù)的調(diào)節(jié),快速實(shí)現(xiàn)精確目標(biāo)水核直徑乳化柴油的制備。例如在研究等差水核直徑對(duì)乳化油單液滴蒸發(fā)特性的研究中,根據(jù)正交試驗(yàn)結(jié)果和等差水核直徑要求,能很快獲得如表5所示的W30下等差水核直徑的制備方案,大幅提高了制備效率。

表5 W30下等差水核直徑的制備方案
1)采用本文的超聲波乳化系統(tǒng),通過(guò)調(diào)節(jié)乳化功率、乳化時(shí)間和超聲波頻率等參數(shù)可實(shí)現(xiàn)了組分不變情況下不同水核直徑的摻水乳化柴油的制備。
2)本文開(kāi)發(fā)的乳化油微觀結(jié)構(gòu)識(shí)別子程序可以自動(dòng)精確地獲得乳化柴油的微觀結(jié)構(gòu)水核直徑分布。基于乳化柴油的微觀結(jié)構(gòu)水核直徑分布特征,本文創(chuàng)新性地提出采用對(duì)數(shù)正態(tài)分布函數(shù)擬合水核的直徑分布規(guī)律,結(jié)果表明,吻合度高達(dá)99.5%以上。相對(duì)于索特平均直徑,基于對(duì)數(shù)正態(tài)分布函數(shù)擬合的表征參數(shù),最大水核直徑和分布標(biāo)準(zhǔn)差可以更準(zhǔn)確地描述摻水乳化柴油內(nèi)部水核直徑分布情況。
3)隨著乳化功率和乳化時(shí)間的增加,摻水乳化柴油的水核直徑均呈現(xiàn)減小趨勢(shì),其中,乳化功率對(duì)水核直徑的影響最大,其次是乳化時(shí)間。超聲波頻率對(duì)水核直徑的影響最小,基本上沒(méi)有明顯影響。相同能量下,增加功率比增長(zhǎng)時(shí)間對(duì)水核直徑和其分布的影響更大。并且當(dāng)水核直徑和分布范圍細(xì)化到一定值后,增加乳化時(shí)間對(duì)水核直徑的影響逐步減弱,不能增強(qiáng)乳化效果,此時(shí)只能通過(guò)增大乳化功率來(lái)進(jìn)一步細(xì)化水核直徑。
[1]王人潔. 電動(dòng)車和天然氣車能源環(huán)境影響的燃料生命周期評(píng)價(jià)研究[D]. 北京:清華大學(xué),2015. Wang Renjie. Fuel-cycle Assessment of Energy and Environmental Impacts from Electric Vehicles and Natural Gas Vehicles[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)
[2]孫乙辰. 淺議汽車尾氣對(duì)環(huán)境污染的影響與防治[J]. 資源節(jié)約與環(huán)保,2019(2):104.
[3]姚春德,許漢君. 車用燃料發(fā)展和研究現(xiàn)狀及其未來(lái)展望[J]. 汽車安全與節(jié)能學(xué)報(bào),2011,2(2):101-110. Yao Chunde, Xu Hanjun. Review of status for automotive fuel and future forecast[J]. Journal of Automotive Safety and Energy, 2011, 2(2): 101-110. (in Chinese with English abstract)
[4]江舸. 淺談柴油發(fā)動(dòng)機(jī)尾氣排放與控制技術(shù)[J]. 內(nèi)燃機(jī)與配件,2019(22):41-42.
[5]Ezir A, Serdar T. Experimental investigation on using emulsified fuels with different biofuel additives in a DI diesel engine for performance and emissions[J]. Applied Thermal Engineering, 2018, 129: 841-854.
[6]Marchitto L, Calabria R, Tornatore C, et al. Optical investigations in a CI engine fueled with water in diesel emulsion produced through microchannels[J]. Experimental Thermal and Fluid Science, 2018, 95: 96-103.
[7]張喜梅,柏雪源,王麗紅,等. 生物油/柴油乳化燃料的燃燒特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(12):271-275. Zhang Ximei, Bai Xueyuan, Wang Lihong, et al. Combustion characteristics of emulsified fuel from bio-oil/diesel oil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 271-275. (in Chinese with English abstract)
[8]Park K, Kwak I, Oh S. The effect of water emulsified fuel on a motorway-bus diesel engine[J]. Journal of Mechanical Science and Technology, 2004, 18(11): 2049-2057.
[9]Saravanan M, Anbarasu A, Gnanasekaran B M. Study of performance and emission characteristics of IC engines by using diesel–water emulsion[J]. International Journal of Advanced Manufacturing Technology, 2013, 69: 9-12.
[10]李建彤,韓萍芳,呂效平. 乳化柴油研究及其應(yīng)用進(jìn)展[J]. 化工進(jìn)展,2004(4):364-369. Li Jiantong, Han Pingfang, Lv Xiaoping. Advance in the study on emulsifying diesel oil[J]. Chemical Industry and Engineering Progress, 2004(4): 364-369. (in Chinese with English abstract)
[11]Hagos F Y, Aziz A R A, Tan I M. Water-in-diesel emulsion and its micro-explosion phenomenon review[C]// Communication Software and Networks(ICCSN), 2011 IEEE 3rd International Conference on IEEE, 2011: 314-318.
[12]郭伯偉. 關(guān)于油摻水乳化燃料燃燒技術(shù)的研究[J]. 冶金能源,1989(4):16-22. Guo Bowei. Study of combustion technique of water-in-oil emulsion[J]. Energy for Metallurgical Industry, 1989(4): 16-22. (in Chinese with English abstract)
[13]Amit, Jhalani, Dilip, et al. A comprehensive review on water-emulsified diesel fuel: Chemistry, engine performance and exhaust emissions[J]. Environmental Science and Pollution Research International, 2019 ,26(5): 4570-4587.
[14]Kimoto K, Owashi Y, Omae Y. The vaporizing behavior of the fuel droplet of water-in-oil emulsion on the hot surface[J]. Bulletin of the Jsme, 2008, 29(258): 4247-4255.
[15]Dmitry A, Maxim P, Pavel S, et al. Dispersed phase structure and micro-explosion behavior under different schemes of water-fuel droplets heating[J]. Fuel, 2020, 259: 116241-.
[16]袁凱. 微乳化油的配制與性能研究[D]. 無(wú)錫:江南大學(xué),2008. Yuan Kai. Studies on Preparation and Performance of Microemulsified Oil[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)
[17]Mura E. Study of the micro-explosion temperature of water in oil emulsion droplets during the Leidenfrost effect[J]. Experimental Thermal and Fluid Science, 2012, 43: 63-70.
[18]Rastogi P, Mehta P S, Kaisare N S, et al. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels[J]. Fuel, 2019, 236(15): 1415-1422.
[19]Califano V, Calabria R, Massoli P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions[J]. Fuel, 2014, 117: 87-94.
[20]遲浩. 摻水乳化柴油單液滴蒸發(fā)特性可視化實(shí)驗(yàn)研究[D].武漢:華中科技大學(xué),2018. Chi Hao. Visual Experimental Study on Single Droplet Evaporation Characteristics of Emulsified Diesel Blending with Water[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese with English abstract)
[21]譚文英,許勇,王述洋. 乳化劑及助乳化劑提高生物油/柴油乳化性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):235-243. Tan Wenying, Xu Yong, Wang Shuyang. Improving emulsifying performance of bio-oil/diesel by emulsion and co-emulsifier[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 235-243. (in Chinese with English abstract)
[22]Huo M, Lin S, Liu H, et al. Study on the spray and combustion characteristics of water–emulsified diesel[J]. Fuel, 2014, 123: 218-229.
[23]Rastogi P, Mehta P S, Kaisare N S, et al. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels[J]. Fuel, 2019, 236(15): 1415-1422.
[24]Da S M, Sad C M S, Pereira L B, et al. Study of the stability and homogeneity of water in oil emulsions of heavy oil[J]. Fuel, 2018, 226(15): 278-285.
[25]Moussa O, Francelino D, Tarlet D, et al. Insight of a W/O emulsion drop under Leidenfrost heating using LIF optical diagnostics[J]. Atomization and Sprays, 2019, 29(1): 1-17.
[26]Patil A V, Sole M X, Tetlie P, et al. Development of an advanced imaging technique for dynamic emulsion stability[J]. Chemical Engineering Journal, 2017, 322: 90-101.
[27]陳俊杰. 基于圖像處理的摻水乳化柴油液滴蒸發(fā)特性研究[D]. 武漢:華中科技大學(xué),2019. Chen Junjie. Study on Single Droplet Evaporation Characteristics of Water Emulsified Diesel Based on Image Processing[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese with English abstract)
[28]Chan T F, Vese L A. Active contours without edges[J]. IEEE transactions on image processing: A publication of the IEEE Signal Processing Society, 2001, 10(2): 266-277.
[29]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685.
[30]朱國(guó)普. 基于活動(dòng)輪廓模型的圖像分割[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2007.
Zhu Guopu. Image Segmentation based on Active Contour Model[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese with English abstract)
Production method and influencing factors of water-in-oil emulsified different diesel with fine water core diameters
Wang Zhaowen, Cao Junhui, Yuan Bo, Wang Yuzhou, Lyu song, Cheng Xiaobei
(,,430074,)
Consumption of petroleum resource has risen sharply in recent years with the increase in fuel vehicles and heavy machinery in mechanized intensive agriculture. A large amount of emitted pollution has posed a serious threat to the atmospheric environment, even to body health in human survival. Water-in-oil (W/O) emulsified diesel fuel has received widespread attention for its ability to simultaneously remove nitrogen oxides and particulate matter. The micro-explosive characteristics of W/O fuel depend strongly on the diameter of the water core. But a systematic solution is still lacking in the preparation of W/O emulsified fuel for the target diameter of the water core at the constant component content.In this study, an image recognition system was first developed suitable for the microstructure of the water core in the W/O emulsified fuel using the Chan–Vese (CV) model. A log-normal function was proposed to fit the diameter distribution of the water core in the W/O emulsified fuel, thereby obtaining a new combination of characteristic parameters. An orthogonal test was selected to explore the influence of emulsification parameters on the diameter of the water core, including the emulsification time, emulsification power, and frequency parameters. The optimal parameters were achieved to fabricate the W/O emulsion with the target diameter of the water core.The results show that the CV model better identified the discrete boundary of the water core with smaller error, compared with manual recognition. The characteristics parameters from the lognormal function fitting can describe more accurately the diameter distribution of the water core in the W/O emulsified fuel, compared with the Sauter Mean Diameter (SMD). The maximum diameter of the water core and the standard deviation of diameter distribution gradually decreased, while the ultrasonic frequency imposed a relatively weak influence on the W/O emulsified fuel, as the emulsification time and power increased. When the diameter of the water core and the distribution reached a critical value, there was much more effect of emulsification power on the diameter of water core and the distribution, compared with the emulsification time with the same energy. In addition, there was no change in the maximum diameter of the water core.The ratios of three preparation factors (ultrasonic frequency, emulsification power, and emulsification time) to the maximum fitting diameter were 0.744, 2.880, and 1.038, respectively. The standard deviations of distribution were 0.028, 0.120, and 0.034, respectively. The priority of three parameters was ranked in order: emulsification power, emulsification time, ultrasonic frequency.
diesel fuels; parameter; emulsion; water core diameter; characterization parameter; orthogonal design
王兆文,曹俊輝,袁波,等. 不同微細(xì)水核直徑的摻水乳化柴油制備方法和影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):235-242.doi:10.11975/j.issn.1002-6819.2021.06.029 http://www.tcsae.org
Wang Zhaowen, Cao Junhui, Yuan Bo, et al. Production method and influencing factors of water-in-oil emulsified different diesel with fine water core diameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 235-242. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.029 http://www.tcsae.org
2020-11-09
2021-02-16
國(guó)家自然科學(xué)基金項(xiàng)目(51576083).
王兆文,博士,副教授,研究方為內(nèi)燃機(jī)燃燒和排放控制研究,Email:wangzhaowen1978@163.com.
10.11975/j.issn.1002-6819.2021.06.029
TK4
A
1002-6819(2021)-06-0235-08