張佳喜,郜周明,蔡佳麟,葉爾波拉提·鐵木爾,芮照鈺,王毅超
橫軸對輥式棉稈起拔裝置設計與試驗
張佳喜,郜周明,蔡佳麟,葉爾波拉提·鐵木爾,芮照鈺,王毅超
(新疆農業大學機電工程學院,烏魯木齊 830052)
針對現有棉稈起拔機械作業需對行、漏拔率及拔斷率高等問題,該研究設計了橫軸對輥式棉稈起拔裝置,其主要工作部件為送稈裝置與拔稈裝置,依據部件作業過程與動力學分析完成了結構參數確定,并獲取了作業性能影響因素及其取值范圍。以機具前進速度、撥禾桿線速度和拔稈輥轉速為影響因子,棉稈漏拔率和拔斷率為響應值進行三因素三水平二次回歸正交試驗,建立了響應面數學模型,并進行了參數優化與驗證。結果表明,漏拔率影響因素的顯著性順序為前進速度、撥禾桿線速度和拔稈輥轉速,拔斷率影響因素的顯著性順序為拔稈輥轉速、撥禾桿線速度和前進速度,最優參數組合為前進速度0.68 m/s,撥禾桿線速度1.75 m/s,拔稈輥轉速221 r/min,在此參數組合下測得棉稈漏拔率為5.24%,拔斷率為3.75%,與理論預測值相對誤差均小于4%。研究結果可為棉稈起拔機械設計提供參考。
農業機械;設計;試驗;橫軸對輥式;棉稈;起拔裝置
棉花是重要的經濟作物[1],新疆是國內棉花的主要種植區,2019年新疆棉花種植面積達2.540×106hm2,占全國棉花種植面積的76%,產量達5.002×106t,占全國總產量的84.9%[2]。棉稈是棉花種植的主要副產物,是一種重要的可再生生物質資源,可作喂養家禽的飼料,也可用于造紙、食用菌培養、環保材料及生物質型煤燃料等領域[3-7]。因此,棉稈資源若能實現循環利用,將產生巨大的經濟利益[8-10]。
國內現有棉秸稈收獲大致分為切割收獲和起拔收獲,其中切割收獲類代表機型有中國農業機械化科學研究院研制的4MG-275型自走式棉稈聯合收獲機[11-12],該收獲技術僅收獲地表5 cm以上棉稈,存在根茬留地、功耗較高和破壞地膜的問題,不利于后續耕整地、播種作業、地膜回收和農作物的生長[13-14];起拔收獲類代表機型有新疆農業機械化研究所生產的4MC-4型鏟切式棉花秸稈收獲機和天津農機推廣總站生產的4MG-2型齒盤式拔棉稈機[15-16],該收獲技術可實現棉稈整株拔起[17-19],缺點是需對行拔取、行距適應性較差。國外棉稈整稈起拔機械以對輥式拔棉稈機為主,以一組間隙可調,相對滾動的膠輥(或輪胎)為拔稈部件,作業時需對行[20],僅適應大單行種植模式,無法滿足新疆寬窄行密植種植模式[21]。
針對上述問題,本文提出一種橫軸對輥相向旋轉拉拔的棉稈起拔方式,設計了橫軸對輥式棉稈起拔裝置,確定了機具工作參數,制作樣機并進行了田間試驗,擬為棉稈起拔機械設計提供參考。
橫軸對輥式棉稈起拔裝置由送稈裝置、拔稈裝置、對輥間距調節機構、傳動系統、牽引裝置等主要部件組成,其中送稈裝置、拔稈裝置為主要工作部件,整機結構如圖1所示,主要技術參數如表1所示。
1.牽引裝置 2.齒輪箱 3.送稈裝置 4.傳動系統 5.機具主體 6.行走輪 7.對輥間距調節機構 8.拔稈裝置 9.擋板 10.支撐架
1.Traction device 2.Gear box 3.Stalk conveying device 4.Transmission system 5.Machine body 6.Road wheel 7. Adjusting mechanism of counter roller spacing 8.Stalk pulling device 9.Baffle 10.Support frame
圖1 橫軸對輥式棉稈起拔裝置結構示意圖
<
Fig.1 Structural diagram of cotton stalk pulling device with horizontal-counter rollers

表1 主要技術參數
作業時,齒輪箱上的動力輸入軸與拖拉機的動力輸出軸通過傳動軸相連,由齒輪箱的左動力輸出軸通過聯軸器將動力傳至鏈傳動,最后由鏈傳動傳至送稈和拔稈裝置,實現齒形皮帶轉動以及拔稈對輥的相向旋轉,進而完成送稈、拔稈作業,如圖2所示,齒形皮帶上的撥禾桿接觸到棉稈后將其折彎至底端喂入點;隨機具前進,棉稈接觸到拔稈輥,受到拔稈輥相向旋轉產生的拉拔力完成喂入起拔作業;棉稈根部被完全拔出后,棉稈受拔稈輥作用完成拋送,平鋪于地表。
1.棉稈 2.齒形皮帶 3.上拔稈輥 4.下拔稈輥
1.Cotton stalk 2.Toothed belt 3.The upper stalk pulling roller 4.The under stalk pulling roller
注:0為皮帶輪角速度,rad·s-1;1為拔稈輥角速度,rad·s-1;m為機具前進速度,m·s-1。
Note:0is the angular velocity of belt pulley, rad·s-1;1is the angular velocity of stalk pulling roller, rad·s-1;mis the forward speed of machine, m·s-1.
圖2 棉稈起拔過程示意圖
Fig.2 Schematic diagram of cotton stalk pulling process
送稈裝置是影響該機具作業效果的關鍵部件,主要由皮帶輪、齒形皮帶、撥禾桿等組成,結構示意圖如圖3所示。新疆地區棉花多采用寬窄行密植種植模式(660 mm+100 mm)[22],經實地調研知,棉稈株高約為700 mm,株距約為50 mm,設計送稈裝置作業幅寬為1 200 mm、豎直高度為700 mm、底端離地高度為200 mm,考慮送稈作業存在一定的速度要求,皮帶輪回轉半徑過小,所需轉軸轉速過大,裝置運行穩定性變差,回轉半徑過大,能耗增加,設計皮帶輪回轉半徑為80 mm。送稈裝置通過撥禾桿與棉稈接觸,帶動棉稈同步運動至底端完成喂入作業,設計送稈裝置為三角形結構,呈45°安裝。
1.皮帶輪 2.撥禾桿 3.齒形皮帶
1.Belt pulley 2.Reel rod 3.Toothed belt
圖3 送稈裝置結構示意圖
Fig.3 Structural diagram of the stalk conveying device
2.1.1 撥禾桿在皮帶上的排列間距
撥禾桿等間距安裝在齒形皮帶上,排列間距大小對送稈裝置作業效果有重要的影響。間距過大易造成送稈過程中棉稈遺漏,導致漏拔;間距過小則撥禾桿易出現空轉現象,送稈效果不好,且造成材料浪費,能耗增加。為得到合理的撥禾桿排列間距,對撥禾桿進行運動學分析。以機具前進方向的反方向為軸正方向,以棉稈生長方向即垂直于水平地面方向為軸正方向,建立如圖4所示坐標系。
注:為撥禾桿與棉稈初始接觸點;為底端喂入點;為待作業的撥禾桿位置點;為下一次作業位置點;為撥禾桿一次送稈作業的運動軌跡;為撥禾桿空轉行程;為撥禾桿在皮帶上的排列間距,mm;為棉稈株距,mm;為皮帶輪回轉半徑,mm;β為棉稈折彎角,(°);v為撥禾桿線速度,m·s-1。
Note:is the initial contact point between the stalk conveying rod and cotton stalk;is the bottom feeding point;is reel rod for next operation;′ is the location point for next operation;is the motion track of one stalk conveying operation;′ is a idle stroke of next reel rod;is the distance of reel rod on the belt, mm;is the distance between cotton stalks, mm;is the turning radius of belt pulley, mm;βis the bending angle of cotton stalk, (°);vis the speed of reel rod, m·s-1.
圖4 撥禾桿運動軌跡示意圖
Fig.4 Motion trajectory diagram of the reel rod
設一次送稈作業所用時間為1,由點運動至′點所用時間為2,對撥禾桿的速度矢量分析,如圖5所示。
注:為撥禾桿軌跡方向角,(°);為送稈裝置安裝固定角,(°);為撥禾桿絕對速度,m·s-1;v為v在軸上的分速度,m·s-1;v為v在軸上的分速度,m·s-1;v為在軸上的分速度,m·s-1;v為在軸上的分速度,m·s-1。
Note:is the direction angle of the motion track of reel rod, (°);is the installation angle of the stalk conveying device, (°);is the absolute speed of reel rod, m·s-1;vis the partial velocity ofvon the-axis, m·s-1;vis the partial velocity ofvon the-axis, m·s-1;vis the partial velocity ofon the-axis, m·s-1;vis the partial velocity ofon the-axis, m·s-1.
圖5 撥禾桿速度矢量分析
Fig.5 Velocity vector analysis of the reel rod
由圖5可知,下一次送稈作業的初始位置點′坐標為(vT2cos-vT2,-vT2sin)。一次送稈作業撥禾桿只作用于一根棉稈,因此△′應滿足以下關系:
由前文可知,棉稈株距=50 mm,送稈裝置安裝固定角=45°,代入式(1)求得撥禾桿排列間距為70.7~212 mm,考慮到棉稈姿態錯綜復雜,取撥禾桿排列間距=200 mm。
2.1.2 撥禾桿線速度
撥禾桿線速度大小決定棉稈在底端的喂入狀態,進而影響棉稈起拔效果。為得到較優的起拔效果,需選擇合理的撥禾桿線速度,因此對送稈作業過程分析,如圖6所示。
在△中,根據幾何關系有:
由此可得:
由式(3)可知,值與棉稈在底端喂入時的折彎角呈負相關,依據前文可知,棉稈高度H=700 mm、皮帶輪回轉半徑=80 mm、皮帶輪回轉中心離地高度2=200 mm、皮帶輪底邊離地高度1=120 mm、送稈裝置安裝固定角=45°,根據自制折彎裝置測試結果知棉稈與豎直方向夾角最小為64.88°時發生折斷,為保證棉稈喂入時不被折斷,需保證>25.12°,將相關數據代入式(3)求得值最大值為max=1.33,即≤1.33時,棉稈不會發生折斷。
注:1為撥禾桿運動軌跡長度,mm;2為長度,mm;3為長度,mm;4為一次送稈作業機具前進距離長度,mm;為下皮帶輪軸心水平延長線與交點;為與下皮帶輪切點;為延長線與地面水平線交點;為棉稈初始狀態;為棉稈最終喂入狀態;1為喂入點離地高度,mm;2為下皮帶輪軸心離地高度,mm;H為棉稈高度,mm;為過點的垂線與夾角,(°)。
Note:1is the length of the motion trackof the reel rod, mm;2is the length of, mm;3is the length of, mm;4is the length of the advance distanceof a stalk conveying operation, mm;is the intersection point between the horizontal extension line of the center of the lower pulley and;is the tangential point betweenand the lower pulley;is the intersection point ofextension line and ground level;is the initial state of cotton stalk;is the final feeding state of cotton stalk;1is the height above the ground of point, mm;2is the height from the ground of the center of the lower pulley, mm;His the length of cotton stalk, mm;is the angle betweenperpendicular through pointand, (°).
圖6 送稈作業過程分析
Fig.6 Analysis of the stalk conveying process
撥禾桿若要完成送稈作業,需保證其在水平方向上的分速度大于前進速度。由圖5知,當夾角接近45°時,送稈效果較好,但作業效率較低。由圖5幾何關系得:
聯立式(3)、式(4)得:
tan=(5)
綜上分析,有<45°,代入式(5)求得<1,滿足棉稈不被折斷的要求(≤1.33)。將值代入式(4)求得前進速度與撥禾桿線速度的比值v/v<0.707,前期樣機測試選用常發CFD604A拖拉機輸出動力,依據其檔位設置,測得前進速度v約為0.56~1 m/s,由此得撥禾桿線速度為v>1.414 m/s。
2.2.1 拔稈輥
拔稈裝置安裝在送稈裝置后方,由1對拔稈輥組成,作業過程中,拔稈裝置利用對輥相向旋轉產生的拉拔力實現棉稈起拔。其中拔稈輥主要由輥軸、空心橡膠輥筒、端板組成,如圖7所示。
1.橡膠輥筒 2.端板 3.輥軸
1.Rubber roller 2.End plate 3.Roll shaft
圖7 拔稈裝置結構示意圖
Fig.7 Structural diagram of the stalk pulling device
根據新疆地區棉花寬窄行密植種植模式,確定拔稈輥作業幅寬為1 250 mm。拔稈裝置是完成拔稈作業的主要工作部件,其中拔稈輥回轉半徑和轉速大小對棉稈起拔有重要影響,為確定合理的拔稈輥回轉半徑和轉速,對棉稈起拔過程受力分析,如圖8所示。
注:0為棉稈的初始起拔角,(°);為棉稈直徑,mm;為拔稈對輥間距,mm;為拔稈輥回轉半徑,mm;為棉稈與拔稈輥的摩擦系數;為拔稈輥對棉稈的壓緊力,N;F為土壤黏結力,N;1為棉稈與拔稈輥初始接觸點;1為拔稈輥軸心連線上一點;1為拔稈輥轉軸軸心。
Note:0is the initial pulling angle of cotton stalk, (°);is the diameter of cotton stalk, mm;is the distance between pulling rollers, mm;is the radius of pulling roll, mm;is the friction coefficient between cotton stalk and roller;is the force of pulling roller on cotton stalk, N;Fis the force of soil bonding, N;1is the initial contact point between the cotton stalk and the pulling roller;1is the point connected to the center of the pulling roller;1is the shaft center of the pulling roller.
圖8 棉稈起拔過程分析
Fig.8 Analysis of the stalk pulling process
由圖8可知,棉稈若要成功喂入并完成拔起,拔稈輥需滿足:
整理得:
由式(6)知,棉稈與拔稈輥之間摩擦系數愈大對棉稈起拔愈有利,本文選用摩擦系數較大的橡膠輥筒。橡膠輥筒具有良好的彈性,可使輥筒與棉稈的接觸面完全貼合,棉稈彈性模量一定,選用彈性較好的橡膠輥筒可將棉稈一部分形變轉移至橡膠輥筒上,在一定程度上對棉稈也起到防斷作用。在△111中:
又由三角變換公式得:
聯立式(7)、式(8)、式(9)得:
經實地調研可知,棉稈直徑約為7~13 mm,秸稈與喂入輥之間的摩擦系數一般為0.3~0.7[23],本文取0.47,代入式(10)求得拔稈輥回轉半徑為≥68 mm,又由式(8)知,拔稈輥回轉半徑增加會導致棉稈初始起拔角0減小,使拔稈輥的棉稈喂入起拔能力增強,故拔稈輥回轉半徑應取較大值,取拔稈輥回轉半徑=100 mm。
拔稈輥的絕對運動為拔稈輥的圓周運動與前進運動的合成,其中拔稈輥圓周線速度v為:

式中v為拔稈輥圓周線速度,m/s;為拔稈輥轉速,r/min。
依據農業機械設計手冊[24],取拔稈輥的圓周線速度與前進速度比值為2~3,依據前文知,前進速度為0.56~1 m/s,代入式(11)求得拔稈輥轉速為191~287 r/min。拔稈輥上任一點的運動軌跡為余擺線,拔稈輥圓周線速度大于前進速度可實現棉稈向后拔起與拋送,但速度不宜過快,過快易拔斷棉稈[25]。
2.2.2 對輥間距調節機構
拔稈對輥對棉稈的壓緊力是影響棉稈起拔的重要因素,為此,選擇在上拔稈輥安裝對輥間距調節機構,結構如圖9a所示。對輥間距調節機構可將棉稈所受正壓力控制在合理范圍內,從而避免棉稈被壓裂;同時在作業時,上拔稈輥可隨棉稈喂入量變化而上下浮動,實現對輥間距的自適應調節,使喂入的棉稈始終處于壓實狀態,有利于棉稈起拔作業。
間距調節機構固定安裝于箱體側板,考慮機構的制造、安裝可操作性,設計回轉桿長度為485 mm,下輥轉軸與方形座軸承軸心距為290 mm,上輥轉軸與方形座軸承軸心距為190 mm,固定支架中心與方形座軸承軸心距為515 mm,對拔稈輥間距調節機構簡化,如圖9b所示。
在△222、△222′、△222中,由余弦定理可得:

在△22′2中:

式中Δ為壓縮彈簧最大壓縮變形量,mm。
依據前文可知,回轉桿長度7=485 mm,對輥回轉中心間距9=200 mm,壓簧原長8=75 mm,5=290 mm,6=190 mm,10515 mm,結合前文分析知,對輥間距最大為9=213 mm,代入式(12)~(14)求得壓簧壓縮后最短長度8=44 mm,代入式(15)求得壓簧最大壓縮變形量Δ=31 mm。
壓簧選用圓柱螺旋壓縮彈簧,依據《GB/T 2089-2009 普通圓柱螺旋壓縮彈簧尺寸及參數(兩端圈并緊磨平或制扁)》[26],選用壓簧原長為75 mm,壓簧中徑為30 mm,彈簧絲直徑為5 mm,壓簧剛度為35 N/mm,上拔稈輥質量約為150 kg,則棉稈起拔過程中每株所受到的壓緊力最大為:
式中為上拔稈輥質量,kg;′為壓簧剛度,N/mm。
將相關數據代入式(16)求得F=910 N,單株棉稈最大起拔力為821.1 N[27],由前文棉稈喂入起拔過程受力分析,可求得所需壓緊力最大為873.5 N,拔稈對輥對棉稈的壓緊力大于棉稈起拔所需壓緊力最大值,可保證棉稈被順利起拔。
2019年10月20-25日,在新疆庫爾勒市尉犁縣一塊秋收后的棉田進行試驗。庫爾勒屬新疆南疆部分,溫帶大陸性氣候,常年干旱少雨,經測量,試驗地土壤堅實度約為467 kPa,土壤含水率為15%~20%,棉花品種為新陸早45號,平均高度700 mm,有少量倒伏,采用寬窄行(660 mm+100 mm)密植種植模式,株距為50 mm左右,每平方米種植約34株棉花。試驗儀器設備有常發CFD604A輪式拖拉機(標定功率44.2 kW)、TJSD-750-Ⅱ型數顯式土壤緊實度測定儀、QS-WT型土壤水分溫度測定儀、轉速儀、鏈輪等,試驗現場如圖10所示。
基于對橫軸對輥式棉稈起拔裝置關鍵部件的作業過程及動力學分析,確定影響拔稈效果的主要因素為撥禾桿線速度、拔稈輥轉速及前進速度,因此選取前進速度1、撥禾桿線速度2、拔稈輥轉速3作為試驗因素。
試驗配套使用常發CFD604A輪式拖拉機,由駕駛員調節拖拉機檔位控制速度,試驗選取機組前進速度分別為拖拉機慢1擋(平均速度約為0.56 m/s)、慢2擋(平均速度約為0.78 m/s)、快1擋(平均速度約為1 m/s);撥禾桿線速度、拔稈輥轉速均通過變換齒輪箱左側動力輸出軸上的主動鏈輪實現速度調整,試驗中保持拖拉機轉速恒定,根據拖拉機實際輸出轉速,實測經鏈傳動傳至送稈裝置后所得皮帶輪轉速分別為179、209、239 r/min,由線速度相關計算求得撥禾桿線速度分別為1.5、1.75、2 m/s,實測經鏈傳動傳至拔稈裝置后所得拔稈輥轉速分別為191、239、287 r/min。
試驗采用Box-Benhnken中心組合設計方法,以三因素三水平二次回歸正交為試驗方案[28-29],依據前文分析計算結果,試驗因素和水平如表2所示。

表2 試驗因素和水平
試驗開展參考《GB/T 8097-2008 收獲機械聯合收割機試驗方法》[30],考察所設計的橫軸對輥式棉稈起拔裝置作業性能。試驗前首先進行機具工位調整,待機具調整完畢且穩定運行后進行試驗,每組試驗重復3次,每次試驗長度為10 m,試驗結果取平均值。試驗前選取長度300 m寬度150 m的區域進行棉稈總數統計記為,統計試驗后棉稈漏拔數記為1,棉稈拔斷數記為2,選取棉稈漏拔率1、棉稈拔斷率2為評價指標,計算方式如下:
式中1為每組試驗區域內棉稈漏拔數;2為每組試驗區域內棉稈拔斷數;為每組試驗區域內棉稈總數。
試驗方案與結果如表3所示,利用Design Expert 8.0.6軟件對試驗結果進行二次回歸分析[31],建立棉稈漏拔率、拔斷率對前進速度、撥禾桿線速度、拔稈輥轉速3個自變量二次多項式響應面回歸模型,如式(18)~(19)所示,并對回歸模型進行方差分析,結果如表4所示。


表3 試驗方案與結果
注:1、2、3為1、2、3的水平值。
Note:1,2and3are the level values of1,2and3.
由表4方差分析可知,評價指標棉稈漏拔率1、拔斷率2的值均小于0.000 1,表明該回歸模型高度顯著,其決定系數2值均大于0.98,說明回歸模型可擬合98%以上的試驗結果。

表4 回歸模型方差分析
值大小反映各參數對回歸模型的影響程度,棉稈漏拔率1模型中除12影響不顯著(>0.05)外,其余回歸項均為影響顯著(<0.05);棉稈拔斷率2模型中除1影響不顯著(>0.05)外,其余回歸項均為影響顯著(<0.05)。由表4各因素值可知,各因素對棉稈漏拔率1的影響顯著性從大到小為:1、2、3;對棉稈拔斷率2的影響顯著性從大到小為:3、2、1。
圖11a為漏拔率對拔稈輥轉速和前進速度的響應曲面圖,可看出拔稈輥轉速一定時,漏拔率隨前進速度的增加而增大,當前進速度一定時,漏拔率隨拔稈輥轉速增加先減小后增大,由曲面變化趨勢可知前進速度對漏拔率的影響比拔稈輥轉速顯著。圖11b為拔斷率對撥禾桿線速度和拔稈輥轉速的響應曲面圖,可看出當拔稈輥轉速固定時,拔斷率隨撥禾桿線速度增加而增大,當撥禾桿線速度固定時,拔斷率對拔稈輥轉速增加而增大。由曲面變化趨勢可知拔稈輥轉速對拔斷率的影響比撥禾桿線速度顯著。結合田間試驗,考慮產生漏拔、拔斷的原因是:棉田經機采棉作業后,工況復雜,存在部分棉稈倒伏較嚴重的情況,機具無法完成送稈作業,導致漏拔;當前進速度過大時,機具無法及時將棉稈輸送至底端完成喂入,送稈效果較差,造成漏拔;采棉機摘錠部件會對棉稈造成一定程度的損傷,在棉稈起拔時易出現拔斷的情況。
利用Design-Expert 8.0.6軟件對漏拔率和拔斷率回歸模型進行優化求解,在Optimization模塊中將漏拔率和拔斷率設置為minimize模式,求得優化組合為:前進速度0.68 m/s,撥禾桿線速度1.73 m/s,拔稈輥轉速221.54 r/min,棉稈漏拔率、拔斷率預測值分別為5.06%和3.83%。
為驗證軟件優化的參數組合的準確性,于庫爾勒尉犁縣進行田間驗證試驗,試驗前將裝置工作參數分別調定為撥禾桿線速度1.75 m/s、拔稈輥轉速221 r/min,機組在前進速度0.68 m/s狀態下進行試驗,試驗重復3次,取3次均值為驗證值。試驗結果表明,優化參數組合下的漏拔率為5.24%,拔斷率為3.75%,理論預測值與3次試驗均值的相對誤差均小于4%,滿足設計要求,證明參數優化模型合理。
橫軸對輥式棉稈起拔裝置采用橫軸對輥相向旋轉拉拔的方式完成棉稈起拔作業,在原有棉稈起拔方式基礎上設計了橫軸對輥式棉稈起拔機構,原有齒盤式拔稈機構適用于大單行種植模式,單次可完成2行棉稈起拔作業[19],橫軸對輥式棉稈起拔機構適用于新疆機采棉密植種植模式,單次可完成4行棉稈起拔作業,在一定程度上提高了作業效率;相比于原有夾持皮帶式拔稈機構[21],橫軸對輥式拔稈裝置棉稈拔斷率降低了6.2%,漏拔率也相對減小。
依據樣機參數優化結果可知,機具在前進速度為0.68 m/s時作業效果最佳,但作業效率較低。機具采用鏈傳動的方式進行作業,若前進速度過快,則鏈傳動穩定性較差,還會使棉稈起拔作業前的棉稈喂入效果不佳,導致棉稈漏拔;機采棉作業后棉稈姿態錯綜復雜,呈散亂狀態,機具送稈作業難度較大。需對機具進行優化改進,以期在較高作業效率下實現最佳的棉稈起拔效果。
1)針對現有棉稈起拔機械作業需對行、漏拔率及拔斷率高等問題,設計了橫軸對輥式棉稈起拔裝置,確定了機具送稈裝置、拔稈裝置等關鍵部件的結構參數,并依據部件作業過程與動力學分析,確定了工作參數要求并進行了試驗驗證。
2)各因素對棉稈漏拔率顯著性影響順序依次為前進速度、撥禾桿線速度和拔稈輥轉速;對拔斷率顯著性影響順序依次為拔稈輥轉速、撥禾桿線速度和前進速度。
3)通過優化分析與試驗驗證,得最佳參數組合為前進速度0.68 m/s,撥禾桿線速度1.75 m/s,拔稈輥轉速221 r/min,試驗結果為棉稈漏拔率5.24%,拔斷率3.75%,與模型預測結果基本吻合,滿足機具設計要求。
4)在原有棉稈起拔方式基礎上設計了橫軸對輥式棉稈起拔機構,相比于齒盤式拔稈機構,橫軸對輥式棉稈起拔裝置在一定程度上提高了作業效率;相比于夾持皮帶式拔稈機構,橫軸對輥式拔稈裝置棉稈拔斷率降低了6.2%,漏拔率也相對減小。
[1] 黃銘森,石磊,張玉同,等. 刷輥式采棉機的改進設計與試驗[J]. 農業工程學報,2017,33(20):41-47.
Huang Mingsen, Shi Lei, Zhang Yutong, et al. Revised design and experiments on brush-rolling cotton harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 41-47. (in Chinese with English abstract)
[2] 國家統計局. 國家統計局關于2019年棉花產量的公告[EB/OL].[2019-12-17].http://www.stats.gov.cn/tjsj/zxfb/201912/t20191217_1718007.html.
[3] 張楓葉,王偉,劉衛星,等. 我國棉花秸稈利用現狀及前景分析[J]. 中國棉花,2016,43(8):21-23.
Zhang Fengye, Wang Wei, Liu Weixing, et al. Analysis of utilization status and prospect of cotton straw in China[J]. Cotton of China, 2016, 43(8): 21-23. (in Chinese with English abstract)
[4] 宋占華,宋華魯,閆銀發,等. 棉花秸稈往復式切割器動刀片優化設計[J]. 農業工程學報,2016,32(6):42-49.
Song Zhanhua, Song Hualu, Yan Yinfa, et al. Optimizing design on knife section of reciprocating cutter bars for harvesting cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 42-49. (in Chinese with English abstract)
[5] 張宏喜,趙秀峰,魏玲,等. 棉桿水解制備木糖的研究[J]. 安徽農業科學,2010,38(23):12687-12689.
Zhang Hongxi, Zhao Xiufeng, Wei Ling, et al. Preparing D-xylose from Cotton Stalk[J]. Anhui Agricultural Sciences, 2010, 38(23): 12687-12689. (in Chinese with English abstract)
[6] 王賢華,鄧勇,李允超,等. 棉稈炭吸附糠醛機理研究[J]. 農業機械學報,2015,46(5):208-213.
Wang Xianhua, Deng Yong, Li Yunchao, et al. Mechanism of furfural adsorption by carbon from cotton stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 208-213. (in Chinese with English abstract)
[7] 宋孝周,雷亞芳,傅峰. 棉稈重組方材制備工藝與試驗[J]. 農業機械學報,2013,44(5):164-168.
Song Xiaozhou, Lei Yafang, Fu Feng. Preparation technology and experiment of cotton stalk recombination square material[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 164-168. (in Chinese with English abstract)
[8] 張晶晶. 棉花秸稈收獲打捆機的數字化設計[D]. 石家莊:河北科技大學,2014.
Zhang Jingjing. Digital Design of Cotton Straw Harvest Baler[D]. Shijiazhuang: Hebei University of Science and Technology, 2014. (in Chinese with English abstract)
[9] 劉之壇. 循環經濟與企業技術創新的關系研究[D]. 武漢:武漢理工大學,2008.
Liu Zhitan. Research on the Relationship Between Circular Economy and Enterprise Technology Innovation[D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese with English abstract)
[10] 陳彬. 循環經濟的生態技術觀解析[D]. 沈陽:東北大學,2006.
Chen Bin. Analysis of Ecological Technology View of Circular Economy[D]. Shenyang: Northeastern University, 2006. (in Chinese with English abstract)
[11] 孫玉峰,陳志,董世平,等. 4MG-275型自走式棉稈聯合收獲機切碎裝置的研究[J]. 農機化研究,2012,34(6):13-16,21.
Sun Yufeng, Chen Zhi, Dong Shiping, et al. Research on cutting device of 4MG-275 self-propelled cotton stalk combine harvester[J]. Agricultural mechanization research, 2012, 34(6): 13-16, 21. (in Chinese with English abstract)
[12] 崔相全,馬繼春,薦世春,等. 我國棉花棉稈收獲機械現狀及發展趨勢[J]. 農業裝備與車輛工程,2011(11):4-6.
Cui Xiangquan, Ma Jichun, Jian Shichun, et al. Current status and development trend of cotton stalk harvesting machinery in China[J]. Agricultural Equipment and Vehicle Engineering, 2011(11): 4-6. (in Chinese with English abstract)
[13] 宋占華,宋華魯,耿愛軍,等. 棉花秸稈雙支撐切割性能試驗[J]. 農業工程學報,2015,31(16):37-45.
Song Zhanhua, Song Hualu, Geng Aijun, et al. Experiment on cutting characteristics of cotton stalk with double supports[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 37-45. (in Chinese with English abstract)
[14] 王鋒德,陳志,董世平,等. 自走式棉稈聯合收獲機設計與試驗[J]. 農業機械學報,2009,40(12):67-70,66.
Wang Fengde, Chen Zhi, Dong Shiping, et al. Design and test of self-walking cotton stalk combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 67-70, 66. (in Chinese with English abstract)
[15] 王桂盛,貢獻,陳勝達,等. 4MC-4型棉柴收獲機的研制[J]. 糧油加工與食品機械,1999(6):23-25.
Wang Guisheng, Gong Xian, Chen Shengda, et al. Development of 4MC-4 type cotton harvester[J]. Grain and Oil Processing and Food Machinery, 1999(6): 23-25. (in Chinese with English abstract)
[16] 張佳喜,葉菲. 我國棉花秸稈收獲裝備現狀分析[J]. 農機化研究,2011,33(8):241-244.
Zhang Jiaxi, Ye Fei. Analysis of the status quo of cotton stalk harvesting equipment in China[J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 241-244. (in Chinese with English abstract)
[17] 賀小偉,劉金秀,王旭峰,等.密植棉稈對行鏟拔鋪放機設計與試驗[J].農業機械學報,2020,51(10):142-151.
He Xiaowei, Liu Jinxiu, Wang Xufeng, et al. Design and experiment of row-controlled shoveling and drawing placement machine for cotton stalks based on agronomy of close planting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 142-151. (in Chinese with English abstract)
[18] 賀小偉,劉金秀,徐楊,等.4MB-6型密植棉稈對行鏟拔鋪放機改進設計[J].農業機械學報,2020,51(S2):21-30.
He Xiaowei, Liu Jinxiu, Xu Yang, et al. Improvement design of 4MB-6 row controlled shoveling and drawing placement machine for cotton stalks in close planting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 21-30. (in Chinese with English abstract)
[19] 張佳喜,汪珽玨,陳明江,等. 齒盤式棉稈收獲機的設計[J]. 農業工程學報,2019,35(15):1-8.
Zhang Jiaxi, Wang Tingjue, Chen Mingjiang, et al. Design of toothed disc type cotton stalk harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 1-8. (in Chinese with English abstract)
[20] 唐遵峰,韓增德,甘幫興,等. 不對行棉稈拔取收獲臺設計與試驗[J]. 農業機械學報,2010,41(10):80-85.
Tang Zunfeng, Han Zengde, Gan Bangxing, et al. Design and test of cotton stalk extraction harvesting platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 80-85. (in Chinese with English abstract)
[21] 蔡佳麟,張佳喜,葉爾波拉提·鐵木爾,等. 夾持帶式棉稈收獲機設計與試驗[J]. 農業機械學報,2020,51(10):152-160.
Cai Jialin, Zhang Jiaxi, Yeerbolati·Tiemuer, et al. Design and test of clamping belt cotton straw harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 152-160.
[22] 武建設,陳學庚. 新疆兵團棉花生產機械化發展現狀問題及對策[J]. 農業工程學報,2015,31(18):5-10.
Wu Jianshe, Chen Xuegeng. Present situation problems and countermeasures of cotton production mechanization development in Xinjiang production and construction corps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 5-10. (in Chinese with English abstract)
[23] 汪莉萍. 復合式秸稈粉碎機設計方法理論研究[D]. 哈爾濱:東北林業大學,2010.
Wang Liping. Research of Design Theory for Composite Straw Grinder[D]. Harbin: Northeast Forestry University, 2010. (in Chinese with English abstract)
[24] 陳志. 農業機械設計手冊[M]. 北京:中國科學技術出版社,2007.
[25] 李怡,張國忠,周勇,等. 棉稈田間起拔力測量系統設計與試驗[J]. 農業工程學報,2013,29(18):43-50.
Li Yi, Zhang Guozhong, Zhou Yong, et al. Design and field experiment of drawing resistance measurement system for cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 43-50. (in Chinese with English abstract)
[26] 中華人民共和國國家質量監督檢驗檢疫總局. 普通圓柱螺旋壓縮彈簧尺寸及參數(兩端圈并緊磨平或制扁):GB/T 2089-2009, [S]. 北京:中國標準出版社,2010.
[27] 陳佳林,曹肆林,盧勇濤,等. 棉稈起拔力關鍵因素的研究及試驗[J]. 農機化研究,2019,41(5):148-151,167.
Chen Jialin, Cao Silin, Lu Yongtao, et al. Research and experiment on the key factors of cotton stalk pulling power[J]. Agricultural mechanization research, 2019, 41(5): 148-151, 167. (in Chinese with English abstract)
[28] 楊慶璐,王慶杰,李洪文,等. 氣力集排式排肥系統結構優化與試驗[J]. 農業工程學報,2020,36(13):1-10.
Yang Qinglu, Wang Qingjie, Li Hongwen, et al. Structural optimization and test of pneumatic set and discharge fertilizer system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 1-10. (in Chinese with English abstract)
[29] 張佳喜,劉阿朋,李驊,等. 棉花秸稈炭微波裂解生產設備研制[J]. 農業工程學報,2020,36(8):219-225.
Zhang Jiaxi, Liu Apeng, Li Hua, et al. Development of microwave pyrolysis equipment for cotton stalk carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 219-225. (in Chinese with English abstract)
[30] 中華人民共和國國家質量監督檢驗檢疫總局. 收獲機械聯合收割機試驗方法:GB/T 8097-2008, [S]. 北京:中國標準出版社,2009.
[31] 袁盼盼,朱興亮,尤佳,等. 釀酒葡萄曲軸式振動脫粒收獲裝置研制[J]. 農業工程學報,2020,36(9):67-74.
Yuan Panpan, Zhu Xingliang, You Jia, et al. Development of vibration threshing and harvesting device for wine grape crankshaft[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 67-74. (in Chinese with English abstract)
Design and experiments of cotton stalk pulling machine with horizontal-counter rollers
Zhang Jiaxi, Gao Zhouming, Cai Jialin, Yeerbolati·Tiemuer, Rui Zhaoyu, Wang Yichao
(School of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China)
Cotton, one of the main commercial crops in the world, mostly distributes in several major growing regions, including Xinjiang of western China. An important renewable biomass resource, the cotton stalk has received most attention to serving as the poultry feed, paper making, environmental protection materials, and biomass briquette fuel. Particularly, the highly efficient recycling of cotton stalk can be widely expected to bring enormous economic and ecological benefits. However, most previous treatments are focused on pulverizing cotton stalks and returning to the field. A great challenge is still posed on the current pulling machines for cotton stalks, with emphasis on operational requirements, leakage, and breaking rate. In this study, a novel horizontal-roller cotton stalk pulling machine was proposed to efficiently implement the pulling of the whole cotton stalk after harvesting. The machine was mainly composed of traction, gearbox, stalk conveying, transmission system, machine body, road wheel, spacing regulating mechanism, stalk pulling, dam-board, and support frame. Specifically, the power input shaft of the gearbox was connected to the power output shaft of a tractor. In working, the power was transferred to the chain drive by the power output shaft of a gearbox, and then to realize the stalk conveying and pulling operation under the rotation of the toothed belt and the opposite rotation of the stalk pulling roller. A systematic kinematic analysis was conducted to determine the influencing factors in the working process. A field test was also carried out in a farmland in Korla City, Xinjiang Uygur Autonomous Region of China in October 2019. The soil firmness was 467 kPa, and the moisture content of the soil was 15%-20%, due to the perennial drought and little rain in the study area. The average height of cotton stalk was 700 mm, while, the plant spacing was 50 mm in a wide and narrow close planting mode. The power was from a CFD604A wheeled tractor with a calibrated power of 44.2 kW. The test was performed on the national standard of a harvester combine test (GB/T 8097-2008). A three-level quadratic regression orthogonal test was designed, where the forward velocity of the machine, the rod velocity of the deflector, and the speed of the stalk pulling roller were selected as the influencing factors, whereas, the leakage rate and plucking rate were the response factors. A response surface method was utilized to establish the regression equations for the relationship between the factors and assessment indexes. An optimal combination of parameters was obtained, while an experiment was also conducted to verify the mathematical model. The test results demonstrated that there were great effects of factors on the performance of horizontal-roller cotton stalk pulling. The significant effects on the leakage rate were ranked in a decreasing order: the forward velocity of the machine, the rod velocity of the deflector, and the speed of the stalk pulling roller. Correspondingly, the significant effects on the plucking rate were ranked in a decreasing order: the speed of the stalk pulling roller, the rod velocity of the deflector, and the forward velocity of the machine. The verification test indicated that the leakage rate of the cotton stalk was 5.24%, and the plucking rate was 3.75%,when the forward velocity of the machine was 0.68 m/s, the rod velocity of the deflector was 1.75 m/s, and the speed of the stalk pulling roller was 221 r/min. The optimal combination was better consistent with the predicted one in model optimization, indicating a reasonable structural design. The findings can provide a sound reference for the structural design and optimization of operation parameters in the horizontal-roller cotton stalk pulling machine.
agricultural machinery; design; test; horizontal-roller; cotton stalk; pulling device
2020-12-06
2021-01-21
天山創新團隊項目(2020D14037);國家自然科學基金項目(51865058);自治區自然科學基金項目(2019D01A45);2017年自治區“天山雪松計劃”(2017Q19)
張佳喜,研究員,博士生導師,主要從事循環農業技術與裝備研究。Email:13899961137@163.com
10.11975/j.issn.1002-6819.2021.07.006
S225.91+2
A
1002-6819(2021)-07-0043-10
張佳喜,郜周明,蔡佳麟,等. 橫軸對輥式棉稈起拔裝置設計與試驗[J]. 農業工程學報,2021,37(7):43-52. doi:10.11975/j.issn.1002-6819.2021.07.006 http://www.tcsae.org
Zhang Jiaxi, Gao Zhouming, Cai Jialin, et al. Design and experiments of cotton stalk pulling machine with horizontal-counter rollers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 43-52. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.006 http://www.tcsae.org