黃周偉
(200093 上海市 上海理工大學 機械工程學院)
溫室大棚的植物生長速度很快,在收獲期每隔三五天便能收獲數噸蔬菜。采摘運送蔬菜的勞動量較大,因為蔬菜都需要從大棚中一籃一籃地拎出來,再送上貨車。運送的時候因顛簸而導致損耗以至于價格受損,經濟效益大打折扣。在這種情況下,便需要一種能方便菜農運輸貨物并減少損耗的運輸工具,且該工具應能適應大棚中狹長行駛路徑和較高負載的要求。
汽車車架是車輛的重要部件,車架上裝配著重要部件和系統(轉向系統、動力系統、傳動系統、車身面板等),通過懸架與車輪相連,不僅承受著自身的載荷,還承受了地面的沖擊載荷,因此必須有足夠的強度、剛度,以避免產生較大變形影響使用。此外出于經濟性考慮,車架不能無限制地使用鋼材來增加強度。隨著計算機輔助設計技術的成熟,CAD/CAE/CAM 技術的應用大大方便了汽車設計,縮短了新車的開發周期,CAE 作為一種新興的數值模擬分析技術,逐漸應用到更為廣闊的科學研究領域中[1]。數值模擬方法具有傳統機械設計所不具備的規模效應、計算精度。近年來,基于有限元法、多體動力學、計算流體力學等理論的仿真分析在汽車行業得到廣泛應用,能夠解決許多以往手工計算遇到的難題。
本文以某大棚用三輪車車架為研究對象,使用Pro/E 進行三維建模,分析校核了在負載情況下車架各焊點強度,采用ANSYS 軟件對某大棚用三輪車的車架進行靜力學分析和模態分析,對進一步設計優化提供參考。
車架有多種類型,其中的梯形車架也稱大梁式車架,一般由2 根橫梁和多根縱梁鉸接或焊接一體,其縱橫梁由鋼板沖壓而成。縱梁截面為槽形或箱形。梯形車架的優點是抗彎曲抗扭轉能力、承載能力較好,結構簡單易于開發。因此選擇梯形式車架作為此次設計所用車架結構。車架材料應當選用具有適當的屈服強度、疲勞強度且沖壓性能、焊接性能好的中低碳鋼[2]。這里選用各零部件制造商常用的Q235 鋼。轎車車架縱橫梁鋼板厚度一般是3.0~5.0 mm;輕型貨車5.0~7.0 mm;重型貨車7.0~9.0 mm。
車架長度與前后軸軸距相關。軸距的確定應當包括車輛性能、裝載面積和軸荷分配等因素,以盡量短為佳。根據預設整車尺寸初步確定軸距為1 000 mm,車架長度一般為軸距的1.3~1.7 倍,則車架長度(即縱梁長度)取為1 350 mm,基本滿足上述要求。
本設計車架寬度即為兩縱梁與橫梁焊接后外邊緣距離,受到輪距與懸架彈性元件的限制,從提升操縱穩定性角度看,車架越寬越好,但車架過寬會導致車輛整體質量大大增加,不利于經濟性和動力性,因此,兩者需統籌兼顧。根據車身布置的綜合考慮,車架寬度選定為650 mm。
車架高度是從車架底面到車座頂部間的垂直距離205 mm,車架選用Q235 方鋼管,截面為矩形,厚度5 mm。矩形鋼管截面尺寸如圖1 所示。

圖1 梁截面尺寸圖Fig.1 Beam section size diagram
車架總體布置和具體設計如圖2、圖3 所示。

圖2 大棚運輸車整體布置圖Fig.2 Overall layout of electric vehicles in greenhouse

圖3 車架設計圖Fig.3 Frame design drawing
表1 列出了整車的技術參數,表2 列出了Q235 鋼的材料屬性參數。

表1 大棚三輪輸送車設計參數Tab.1 Design parameters of greenhouse three-wheel vehicle

表2 Q235 鋼材料屬性參數Tab.2 Material property parameters of Q235 steel
如圖4 所示,在Pro/E 軟件中繪制車架的三維實體模型,為便于有限元軟件網格生成,簡化了車架倒角等細微特征,生成STP 文件。

圖4 等比例車架模型Fig.4 Proportional frame model
整車裝配完成后,在Pro/E 軟件中查看質量屬性(圖5),將所得體積乘以Q235 鋼的密度7.86 g/cm3可得質量為44.3 kg,自重約為443 N。重心距離橫梁前端截面約890 mm。
圖6 所示為車架的受力分析,得到

式中:FA,FB——A,B 兩點的支座反力;Gf——車架重量;Gg——貨物重量;Gm——人員重量。
則支座反力:FA=742.33 N,FB=2 700.67 N,前后輪邊力為支座反力的一半,吊耳的支撐力為支座反力的1/4。故:
C 截面剪切強度:σC=0.14 MPa;
懸架吊耳剪切強度:σA=0.62 MPa;
后輪吊耳剪切強度:σB=4.5 MPa;
后輪鉸支座剪切強度:σT=1.13 MPa。
因為Q235 為塑性材料,取安全系數為1.8,則以上各值均遠小于Q235 鋼的許用應力130 MPa,且對于此類中低強度碳鋼,焊縫強度一般比原材料強度高,故焊接口偏于安全,車架的剪切強度偏于安全。
有限元法(Finite Element Method,FEM)是現代科學分析的一種重要方法。它是20 世紀60年代左右興起的計算機技術及相關學科相互交叉,綜合發展的新興科學。有限元法最初應用在工程研究中,用于分析并且解決熱力學、電磁學等物理問題[3]。圖7 為Workbench 中構建的分析模塊框圖。

圖7 Workbench 仿真原理圖Fig.7 Workbench simulation schematic diagram
具體分析過程如下:
(1)在units 菜單中將模型單位預設為kg,mm,s;(2)選擇靜力分析模塊,將幾何模型CHEJIA.STP 導入geometry 部分;(3)定義材料屬性。新建材料Q235,按表2 輸入彈性模量、泊松比、密度;(4)網格劃分。打開model 模塊,在mesh 細節中設置單元尺寸為5 mm,單元格形狀為四面體單元。網格劃分完成后得到車架的有限元模型,車架網格模型如圖8 所示,共劃分網格單元111 667 個,節點222 536 個;(5)施加載荷和約束。如圖9 所示,對模型施加初始重力443 N,方向為Z 軸方向;C 點車座處施加1 000 N的人體體重;車架上表面施加2 000 N 的貨物重量。前輪懸架連接處與后輪龍頭連接處分別施加鉸支座約束和固定端約束。

圖8 車架網格Fig.8 Frame mesh

圖9 載荷與約束條件Fig.9 Load and constraint conditions
由圖10 和圖11 可知,形變最大處為車座,達到0.196 mm;應力分布較均勻,最大應力在車架縱梁拐角,達到46.33 MPa,小于許用應力130 MPa。

圖10 車架靜態應力云圖Fig.10 Static stress nephogram of frame

圖11 車架靜態形變云圖Fig.11 Static deformation nephogram of frame
模態分析是對車架的振動屬性進行分析研究,通過分析相關的車架模態參數對車架進行動態特性分析和仿真模擬。當車架因外界激勵發生振動時,其表現的系統振動位移特征稱為固有振型,通過振型方程求解出的一系列特征值稱為固有頻率;當激勵頻率和固有頻率相等時,就會產生共振,系統會產生較大振動變形,這會使車架的強度和疲勞壽命急劇減少[4]。因此,對車架進行模態分析是檢驗車架設計是否合理的有效手段。由于結構振動可以用簡單獨立的振動形式疊加來表示,且車架的固有頻率以及外界各種激勵頻率都不是很大,所以,低階的振型比高階的振型對結構的影響要大,即車架的動態特性取決于低階振型。
車架的模態分為自由模態和約束模態,通過自由模態對結構本身的尺寸、材料、振動情況等有個大概的了解。施加約束載的模態則能反映真實的振動情況。
(1)車架的自由模態(如圖12)

圖12 車架前12 階自由模態Fig.12 The first 12 free modes of the frame
重新將車架模型導入到modal 模塊中,劃分網格并進行自由模態的求解,得到前12 階模態。前6 階剛體模態為0。第7~10 階自由模態(如圖14)可以看出,x,y 向扭轉振動使得車架頭部和尾部角點產生較大位移。由圖14 可見:1階模態振形主要是車架y 軸方向的扭轉彎曲,2階模態振形為x 軸方向的扭轉彎曲,3 階振形是y 向1 階扭轉,4 階振形為x 向的1 階扭轉,5 階模態振型為2 階扭轉和彎曲的結合,6 階模態振形為3 階扭轉和彎曲結合。
(2)車架的約束模態
將靜力分析后的結果導入到新的模態分析中可得帶有預應力的模態(見圖13)。

圖13 前6 階預應力模態Fig.13 The first 6 prestressed modes

圖14 自由模態振形Fig.14 Free mode shapes
前6 階預應力模態振形如圖15 所示。

圖15 前6 階帶預應力模態振形Fig.15 The first six prestressed mode shapes
(3)車架模態分析結果評價
模態節點位置的模態振型值為0,則其他結構安裝在此處可以使得接觸位置在該階模態下的振動變形最小化,又因為外界激勵頻率變化所激起的模態階次不同,使得最佳節點位置是變化而非固定的。所以,安裝節點位置要綜合考慮該結構的前幾階模態,確定出相對合適的安裝點。因此,在安裝位置確定之前要分析出自由模態,以確定幾個主要關心的模態節點,待安裝位置確定后再做約束模態分析,以驗證實際結構是否合理[5]。
車架的振動情況主要與路面激勵頻率和發動機轉速頻率有關,路面激勵頻率隨機性較大,道路激勵通過車輪、懸架等傳遞到車架,使懸架固定點產生位移和振動,因此,懸架固定點位置選擇對其疲勞壽命有重要影響。路面激勵頻率和發動機的頻率可通過以下經驗與公式計算[6]。發動機的轉速頻率與發動機轉速、發動機氣缸數、發動機沖程數有關,計算公式如下:

式中:n——發動機轉速;m——發動機氣缸數;p——發動機沖程數;f——發動機轉速頻率。
本三輪車所采用的發動機型號為四沖程四缸柴油發動機,怠速轉速是750 r/min,則發動機怠速轉速頻率約25 Hz;發動機的最高轉速頻率約90 Hz。
由模態分析結果可知,自由模態下第7 階為92.8 Hz,第8 階及以上模態均高于發動機頻率,則根據第7 階模態可知,發動機固定在前輪附近的車架中部將有助于減小發動機與車架的共振情況。第10 階模態中總量前部轉角變形較大,應當做成圓角設計以減小應力集中。
約束模態第2 階振型中,兩個縱梁末端變形較大,可適當的在此位置添加加強筋,提高其剛度。在第3,4,5 階振型中,第2,3 根橫梁附近變形最大,應當增加加強筋。在第6 階振型中,第2,3 根橫梁中間部分變形最大,可對這兩個位置做適當加強處理。
在前6 階振型中,第1 階振型的最大變形量為13.8 mm,在前6 階振型中變形量最大,最大的變形量位于車座位處,同時,在左后支撐處變形也較大,可以通過改進此位置的支撐方式來提高其剛度。同時,前6 階振型的固有頻率均遠遠大于發動機的怠速轉速頻率,所以,避免了在怠速狀況下的共振現象。同時,在三輪運輸車行駛過程中,發動機的轉速頻率在90 Hz 左右,可以看出車架的固有頻率均在102.95 Hz 以上,所以,在運輸過程中不會出現共振。另外,道路的激振頻率一般在25 Hz 以下,不處于車架激振頻率范圍之內,不容易發生共振現象。
通過對某大棚三輪運輸車車架的建模與有限元強度分析,給出了這款運輸車車架的優化設計方案。
(1)文中運用Pro/E 對車架進行了建模與簡化,建立幾何模型,并利用ANSYS 軟件對某型號的大棚三輪運輸車的車架進行了參數定義、網格劃分、自由度約束、載荷施加,建立能夠用于解析的有限元模型。
(2)利用ANSYS 對車架進行了靜態分析,求解得出位移圖與應力圖。可以看出車架的應力分布較均勻,最大應力遠小于材料的許用應力,滿足工況要求。對應力與變形較小的地方可以適當減少材料,減少資源浪費,提高資源利用率,提高汽車的輕量化設計與節能研究。當然修改后要進行再一次的計算和實驗,保證車架整體的安全性能。
(3)對車架進行模態分析,得出了前6 階振型與固有頻率。由模態分析結果可以看出,車架的固有頻率都遠遠大于外界激勵的頻率,所以不會發生共振現象。故所設計的車架符合安全要求和經濟性要求。