崔虎亮,賀霞,張前
不同牡丹品種開花期間花瓣花青素和類黃酮組成的動態變化

1太原理工大學建筑學院,太原 030024;2山西農業大學園藝學院,山西太谷 030801
【】牡丹()是中國傳統名花之一,花色豐富,品種多樣,通過測定不同花色品種在花朵開放期間花瓣花青素苷、類黃酮苷的種類和含量,并分析其動態變化規律,為牡丹花色的呈色機理及不同花色育種提供參考。選擇5種不同花色的牡丹品種為試驗材料,采集蕾期(S1)、露色期(S2)、盛開期(S3)和衰敗期(S4)等4個不同時期的花瓣,利用高效液相色譜(HPLC)和質譜聯用(LC-MS)技術對其花青素苷和類黃酮苷進行定性定量分析,比較不同花色品種之間的差異。檢測到6種花青素苷和12種類黃酮苷。其中,紫色品種‘洛陽紅’檢測到的花青素苷種類最多,花瓣中共檢測到4種花青素苷,而白色品種‘白雪塔’中未檢測到花青素苷;在檢測出的12種類黃酮苷中,芹菜素5-葡萄糖苷(7.18%—58.46%)、芹菜素己糖葡萄糖苷(1.44%—43.72%)和山奈酚3,7-葡萄糖苷(2.83%—43.44%)的相對含量明顯高于其他物質。6種花青素苷在花朵開放期間不斷積累,從蕾期(S1)至衰敗期(S4),花青素總含量不斷增加,其中在盛開期(S3)總含量顯著增加,在S4時期達到最高值。類黃酮物質總含量在花朵開放與衰老期間呈現先增加后降低的趨勢,但不同品種的變化趨勢差異明顯。‘洛陽紅’的類黃酮總含量在衰敗期(S4)達到最大值(752.93±48.10)μg?g-1FW,‘趙粉’在盛開期(S3)達到最大值(603.81±6.30)μg?g-1FW,‘白雪塔’在露色期(S2)達到最大值(673.45±9.96)μg?g-1FW,‘迎日紅’和‘粉荷’均在蕾期(S1)達到最大值,其含量分別為(525.88±22.38)μg?g-1FW和(740.56±16.08)μg?g-1FW。不同顏色的牡丹品種中花青素苷和類黃酮苷差異較為顯著,紫色品種花青素苷含量較高,白色品種幾乎不含有花青素苷。花青素苷在花朵開放過程中不斷積累,而類黃酮苷存在先積累后降解的變化趨勢。
牡丹;花青素;類黃酮;花色
【研究意義】牡丹(Andr.)是我國十大名花之一,具有極高的觀賞價值,且根可入藥,種子可榨油,是一種多功能用途植物[1-3]。牡丹目前有1 000多個品種[2],花色較為豐富,通常分為9大色系,即白色系、粉色系、紅色系、紫色系、藍色系、黑色系、綠色系、黃色系和復色系[4]。研究牡丹不同花色品種的花青素苷和類黃酮苷的差異及其開花過程中的動態變化,對明確觀賞植物花色呈色機理和花色育種具有重要意義。【前人研究進展】經過多年的研究,初步明確了牡丹花瓣中花青素苷和類黃酮苷的組成。Wang等[5]在中原牡丹品種和日本牡丹品種花瓣中鑒定出了6種花青素物質,分別為芍藥素-3-葡萄糖苷(peonidin-3-glucoside)、芍藥素-3,5-葡萄糖苷(peonidin-3,5-glucoside)、矢車菊素-3-葡萄糖苷(cyaniding-3-glucoside)、矢車菊素-3,5-葡萄糖苷(cyaniding-3,5-glucoside)、天竺葵素-3-葡萄糖苷(pelargonidin-3-glucoside)和天竺葵素-3,5-葡萄糖苷(pelargonidin-3,5-glucoside)。FAN等[6]通過液相色譜(HPLC)對48個中原牡丹品種進行研究,最終鑒定出5種花青素、3種黃酮醇和6種黃酮類化合物,并且首次分離鑒定出芹菜素戊己糖苷(apigenin pento-hexoside)和芹菜素葡萄糖醛苷(apigenin hexo-glucuronide)。BAO等[7]對紫斑牡丹()花瓣進行UHPLC-ESI-HRMSn分析,并分離鑒定了11種類黃酮物質。LI等[8]對黃色牡丹品種花瓣呈色物質進行HPLC分析,鑒定出26種類黃酮物質,其中山奈酚、蘆丁、芹菜素等衍生物是主要成分;而YANG等[9]進一步對牡丹、芍藥和伊藤雜種中的黃色品種進行HPLC-DAD和HPLC-Q-TOF-MS/MS鑒定,最終分離鑒定出29種類黃酮物質,并且發現不同品種間類黃酮物質含量差異顯著。ZHAO等[10]對白色品種‘雪塔’和紅色品種‘彩繪’的花色素主要成分差異進行比較,發現兩者均可檢測到芹菜素-7-葡萄糖苷(apigenin- 7-glucoside)和芹菜素脫氧殼聚糖(apigenin deoxyheso- hexoside)2種物質,但是芍藥素-3,5-葡萄糖苷(peonidin-3,5-glucoside)僅在紅色品種‘彩繪’中檢出。JIA等[11]對紫色系、粉色系、白色系和黃色系共41個芍藥品種花瓣進行HPLC-DAD分析,最終鑒定出的主要花青素苷與WANG等[5]的結論相似,但是,紫色芍藥品種含有4—5種花青素苷,而粉色品種僅含有矢車菊素-3,5-葡萄糖苷和芍藥素-3,5-葡萄糖苷,且含量較低。可見,不同花色牡丹品種中花青素物質種類及含量均存在較大差異。【本研究切入點】花青素是廣泛分布于植物中的一種水溶性色素,隸屬于苯丙氨酸代謝途徑,也是目前研究得較為清晰的次生代謝物途徑之一[12-13]。目前來看,花青素苷元主要有6種,分別為天竺葵素、矢車菊素、芍藥素、飛燕草素、矮牽牛素和錦葵素。不同色素苷元經過羥基化、甲基化和糖基化反應產生較為穩定的結構存在于花瓣中[14]。在牡丹中,花青素苷合成途徑中關鍵節點酶基因的功能分析已有較多研究,如查爾酮合成酶(chalcone synthase,CHS)、二氫黃酮醇4-還原酶(dihydroflavonol 4-reductase,DFR),以及花青素苷合成酶(anthocyanidin synthase,ANS)等[10,15-16]。轉錄因子對關鍵基因的轉錄調控同樣受到廣泛關注,如可激活牡丹和等基因的表達[17],紫斑牡丹中R2R3-MYB轉錄因子調控關鍵節點酶基因的互作也得到驗證[18]。然而,不同花色牡丹花青素含量差異及其開花過程中的差異化積累有待深入研究。【擬解決的關鍵問題】本研究對5個不同花色的牡丹品種花瓣中花青素苷和類黃酮苷進行HPLC和LC-MS的定性定量檢測,分析不同花色牡丹品種中花青素苷和類黃酮苷的動態變化規律,為豐富牡丹花青素苷代謝途徑的相關理論提供參考,同時為花色育種提供理論基礎。
本研究選擇5種不同花色的牡丹品種為試驗材料,分別為白色品種‘白雪塔’、粉色品種‘趙粉’、紅色品種‘迎日紅’、藍色品種‘粉荷’和紫色品種‘洛陽紅’,均種植于太原迎澤公園牡丹園,株齡均在10年以上。參考李嘉玨等[2]和王蓮英等[4]的方法,將牡丹開花時期分為:蕾期(S1)、露色期(S2)、盛開期(S3)和衰敗期(S4),并于2020年4—5月采集不同開花時期的花冠下層花瓣(圖1),每個品種選擇長勢一致的5個單株,每個單株分散選取花瓣,隨機混合后液氮冷凍帶回實驗室-80℃保存備用。
色譜級甲醇、甲酸、三氟乙酸(TFA)和乙腈等化學藥品購自Fisher Scientific(Fair Lawn,NJ)公司。本研究使用的標準品槲皮素-3-葡萄糖苷(quercetin- 3-glucoside,Qc3g)、楊梅素(myricetin)、山奈酚-3-鼠李糖苷(kaempferol-3-glucorhamnoside,Km3gr)、芹菜素、矢車菊素-3-葡萄糖苷(cyanindin-3-glucoside,Cy3g)和矢車菊素-3-蕓香糖苷(cyanindin 3-rutinoside,Cy3r)購自Sigma-Aldrich(St. Louis, MO)公司;山奈酚和蘆丁購自Solarbio(Solarbio,China)公司。試驗用超純水由PureLab Ultra(ELGA LabWater,UK)超純水系統制備,本試驗所用其他試劑均為色譜純。
取0.1 g新鮮樣品于液氮中充分研磨,利用2 mL 甲醇/水/甲酸/TFA(70﹕27﹕2﹕1,v/v/v/v)提取液避光靜置提取24 h,然后12 000 r/min離心20 min,取上清液0.22 μm濾膜過濾用于液相檢測。HPLC分析使用Thermo Fisher高效液相色譜系統連接996二極管陣列檢測器(UltiMate 3000,ThermoFisher,US)。檢測波長190—600 nm,色譜柱為Venusil ASB C18(4.6 mm×250 mm,5 μm)。流動相為2%甲酸水(A)和乙腈(B)。梯度條件如下:0 min,8% B;3 min,8% B;23 min,20% B;33 min,40% B; 43 min,40% B;45 min,8% B。柱溫35℃,進樣量10 μL,流速0.8 mL?min-1。二級陣列管檢測器進行全波長掃描,在350 nm檢測類黃酮物質,在520 nm檢測花青素。所有樣品設定3次生物學重復。

S1:蕾期;S2:露色期;S3:盛開期;S4:衰敗期。BXT:白雪塔;ZF:趙粉;YRH:迎日紅;FH:粉荷;LYH:洛陽紅
采用HPLC -microOTOF Q(ThermoFisher,US)飛行時間系統獲得質譜數據。全掃描電噴霧電離(either an electrospray ionization,ESI),正負離子模式,HPLC分析條件同1.3,分子量掃描范圍m/z 50—1 100,毛細管電壓3 500 V,毛細管出口電壓500 V,干燥氣體(nitrogen)流速為8.0 L?min-1,干燥氣體溫度180℃,碰撞頻率200 Vpp; 噴霧器壓力0.8 bar,預脈沖時間8.0 μs,轉移時間80.0 μs,碰撞能量10.0 eV。
運用LC-MS方法,在350 nm和520 nm下分別檢測類黃酮和花青素苷,根據質譜色譜信息、分子量、分子式和二級質譜碎片,以及相關文獻等信息綜合推定待測化合物。有標準品的化合物,采用外標法[19]分別計算各化合物含量;沒有標準品對照的化合物,采用相似結構化合物的外標法確定其相似化合物的含量。本研究構建的標準曲線有:矢車菊素-3-葡萄糖苷(=274.1046+0.1328,2=0.99987);槲皮素(= 392.9441+0.5815,2=0.99865);槲皮素-3-葡萄糖苷(=339.3973-0.3364,2=0.99997);蘆丁(= 214.2924-0.1913,2=0.98327);芹菜素(=516.2105+ 0.0001,2=0.99666);楊梅素(=1040.74-2.1097,2=0.99798)。
根據出峰時間,最大吸收波長(max)、MS質譜數據等綜合信息進物質推定,最終共推定出6種花青素苷(圖2),相應的出峰時間、最大波長和HPLC-ESI(±)-MS2等數據詳見表1。

峰序號代表的樣品信息詳見表1 Peak numbers were as shown in Table 1

表1 不同牡丹品種花青素結構推定的色譜、波長和質譜信息
Cy3g5g:矢車菊素-3,5-葡萄糖苷;Pg3g5g:天竺葵素-3,5-葡萄糖苷;Pn3g5g:芍藥素-3,5-葡萄糖苷;Cy3g:矢車菊素-3-葡萄糖苷;Pg3g:天竺葵素-3-葡萄糖苷;Pn3g:芍藥素-3-葡萄糖苷。下同
Cy3g5g: Cyanidin-3, 5-glucoside; Pg3g5g: Pelargonidin-3, 5-glucoside; Pn3g5g: Peonidin-3,5-glucoside; Cy3g: Cyaniding-3-glucoside; Pg3g: Pelargonidin-3-glucoside; Pn3g: Peonidin-3-glucoside. The same as below
前人研究表明,花青素通常在紫外光區(260—280 nm)和可見光區(500—520 nm)有最大吸收值(λmax),不過天竺葵素衍生物的λmax通常在495—505 nm[20,22]。本研究中,峰2和峰5的λmax均小于500 nm(分別為496.69和499.91 nm),而峰2的質譜數據母離子為m/z 595.17([M-H]+),二級離子m/z 271.06([Y0]+),表明丟失2個葡萄糖苷(162 Da),因此可推斷該物質為天竺葵素-3,5-葡萄糖苷(pelargonidin-3,5- glucoside,Pg3g5g);同理,峰5的母離子為m/z 433.01([M-H]+),二級離子m/z 271.06([Y0]+),表明丟失了1個葡萄糖苷(162 Da),推定為天竺葵素-3-葡萄糖苷(pelargonidin-3-glucoside,Pg3g),該物質在日本牡丹品種中已有報道[5],不過FAN等[6]在中原牡丹品種中未檢測到Pg3g。本研究供試的5個牡丹品種中,僅‘迎日紅’中檢測到Pg3g,這與前人結論相似。但是,ZHANG等[21]發現‘霓虹幻彩’和‘桔園少女’2個牡丹品種富含天竺葵衍生物。
峰1和峰4有相同的二級離子m/z 287.3([Y0]+),但是一級離子存在差異,峰1為m/z 611.16([M-H]+),峰4為m/z 449.1([M-H]+)。而峰4與標準品Cy3g的保留時間一致(圖2),因此,推斷峰1為矢車菊-3,5-葡萄糖苷(cyanidin-3,5-glucoside,Cy3g5g),峰4為矢車菊-3-葡萄糖苷(cyanidin-3-glucoside,Cy3g)。研究表明,花青素衍生物中,雙糖苷化合物極性通常大于單糖苷化合物,極性較強的物質在HPLC檢測系統中通常分離洗脫順序早于極性較弱的物質[14,23]。FAN等[6]發現Cy3g5g在大多數中原牡丹品種中極性較強,這一現象同樣在本研究中得到驗證。此外,矢車菊素極性大于天竺葵素和芍藥素的現象在其他花卉作物中也得到證明,如月季[24]、荷花[25]、三色堇[26]等。
同理,峰3和峰6分別推定為芍藥素-3,5-葡萄糖苷(peonidin-3,5-glucoside,Pn3g5g)和芍藥素-3-葡萄糖苷(peonidin-3-glucoside,Pn3g)。顯然,芍藥素類衍生物在牡丹不同品種中分布較為廣泛[21,27]。
在350 nm波長下,本研究共鑒定出12種黃酮類物質(圖3),主要成分為槲皮素、芹菜素和山奈酚的衍生物(表2),這幾種物質在植物界分布廣泛[13,28]。
峰5、7和12分別與標準品蘆丁、槲皮素-3-葡萄糖苷(quercetin-3-glucoside,Qu3g)及楊梅素共洗脫保留時間一致(圖3),而質譜數據進一步證明這3個峰可推定為這3個物質(表2)。峰3、4和6的二級離子為m/z 285,表明這3個物質應為山奈酚衍生物;前人報道,山奈酚溶于甲醇之后的λmax位于266 nm(帶Ⅱ)和367 nm(帶Ⅰ),而槲皮素的λmax位于255 nm(帶Ⅱ)和370 nm(帶Ⅰ),但是山奈酚和槲皮素3-羥基的糖苷化通常會導致帶Ⅰ的λmax藍移12—17 nm[29];根據這一規律,峰6的λmax為362.07 nm,可推定為山奈酚-7-葡萄糖苷(kaempferol-7-glucoside,Km7g);峰4的λmax為352.43 nm,表明存在藍移現象,因此該物質為山奈酚-3-葡萄糖苷(kaempferol- 3-glucoside,Km3g);峰3的λmax為265.11 nm和345.81 nm,母離子為m/z 609([M-H]-),二級離子為m/z 447和m/z 285([Y0]-),表明丟失了2個葡萄糖苷(162 Da),因此該物質可推定為山奈酚-3,7-葡萄糖苷(kaempferol- 3,7-glucoside,Km3g7g),這一物質在牡丹黃色品種中大量分布[8-9]。

A:標準品分離圖。Std 1:蘆丁;Std 2:槲皮素-3-葡萄糖苷;Std 3:楊梅素;Std 4:山奈酚-3-鼠李糖苷;Std 5:槲皮素;Std 6:芹菜素;Std 7:山奈酚。B:‘洛陽紅’分離圖。峰序號代表的詳細信息見表2

表2 牡丹品種花瓣中黃酮類化合物的色譜、光譜和質譜特征數據
Km3g7g:山奈酚3,7-葡萄糖苷;Km3g:山奈酚-3-葡萄糖苷;Km7g:山奈酚-7-葡萄糖苷;Qu3g:槲皮素-3-葡萄糖苷;Ap5g:芹菜素-5-葡萄糖苷;Aphg:芹菜素己糖-葡萄糖苷;Lt7g:木犀草素-7-葡萄糖苷;My:楊梅素。下同
Km3g7g: Kaempferol-3,7-glucoside; Km3g: Kaempferol-3-glucoside; Km7g: Kaempferol-7-glucoside; Qu3g: Quercetin-3-glucoside; Ap5g: Apigenin-5- glucoside; Aphg: Apigenin hexo-glucoside; Lt7g: Luteolin-7-glucoside; My: Myricitrin. The same as below
芹菜素及其衍生物的λmax在267 nm和335 nm[30-31],可暫定峰9和峰10為芹菜素衍生物。根據質譜信息,峰9母離子為m/z 431.36([M-H]-),二級離子為m/z 269.22([Y0]-),推定為芹菜素-5-葡萄糖苷(apigenin-5-glucoside,Ap5g);峰10的母離子為m/z 577.44([M-H]-),二級離子為m/z 431.36/269.17([Y0]-),推定為芹菜素己糖-葡萄糖苷(apigenin hexo -glucoside,Aphg)。
前人報道木犀草素的λmax為340 nm[31],根據峰11的最大吸收波長和質譜數據(表2),暫定其為木犀草素-7-葡萄糖苷(luteolin-7-glucoside,Lt7g)。本研究中峰1、峰2和峰8等3個物質未能推定,主要原因是其質譜數據、最大吸收波長,以及前人報道等綜合信息無法準確印證。如峰2的質譜數據為母離子為m/z 463.09([M-H]-),二級離子為m/z 463.09和271([Y0]-),表明該物質與槲皮素衍生物相似,但是λmax為331.9 nm,這與前人報道的352—370 nm差距較大,不能證明這一假設[32]。
如表3所示,5個牡丹品種花青素含量差異較大。其中‘洛陽紅’花青素含量最高,在S4時期達到340.06 μg?g-1FW,‘白雪塔’未能檢出花青素,而前人研究也證實牡丹白色品種中幾乎不含有花青素,如‘香玉’[6]和‘冰山雪蓮’[21]等。本研究中,不同顏色的品種花青素物質差異也較為明顯,‘洛陽紅’檢出4種花青素(Cy3g5g、Pn3g5g、Cy3g和Pn3g),‘迎日紅’檢出2種花青素(Pg3g5g和Pg3g),‘粉荷’檢出2種花青素(Pg3g5g和Pn3g5g),‘趙粉’僅有1種,即Pg3g5g。由此可見,不同顏色品種花青素含量存在顯著差異,這與前人結論相似[6,8,10]。
本研究共鑒定出12種類黃酮苷物質,表4所示為不同品種類黃酮苷含量在花朵開放期間的動態變化結果,可以看出類黃酮苷物質在不同品種中分布差異較為明顯。‘洛陽紅’和‘粉荷’兩個品種中能夠檢出全部的類黃酮苷物質,而‘白雪塔’和‘趙粉’未檢出蘆丁和Km7g。‘迎日紅’未檢測到Km7g、Lt7g和楊梅素。總體來看,Ap5g(7.18%—58.46%)、Aphg(1.44%—43.72%)和Km3g7g(2.83%—43.44%)這3種物質的相對含量高于其他物質。
本研究中,6種花青素苷在花朵開放期間總體上不斷積累,從蕾期(S1)至衰敗期(S4),花青素總含量持續增加,在S4時期達到最高值,這種現象在其他研究中同樣存在。ZHAO等[10]測定牡丹品種‘彩繪’發現花青素含量在花期不斷積累;而ZHANG等[33]發現‘洛陽紅’花朵膨大期至半開期花青素含量不斷增加;GU等[18]發現紫斑牡丹品種‘青海湖銀波’色斑區花青素含量在開花前20 d開始增加,至花期達到最大值。

表3 牡丹4個品種花朵開放期間花青素苷含量動態變化
不同小寫字母表示差異顯著(<0.05)。下同
Different lowercase letters indicate significant difference(<0.05). The same as below

表4 牡丹5個品種花朵開放期間類黃酮苷含量動態變化

續表4 Continued table 4
類黃酮物質總含量在花朵開放至衰老期間呈現先增加后降低的趨勢,但不同品種的變化趨勢差異明顯。‘洛陽紅’的類黃酮總含量在S4時期達到最大值((752.93±48.10)μg?g FW),‘趙粉’在S3時期達到最大值((603.81±6.30)μg?g FW),‘白雪塔’在露色期(S2)時期達到最大值((673.45±9.96)μg?g FW),‘迎日紅’和‘粉荷’均在現蕾期(S1)達到最大值。這表明類黃酮物質在花朵開放之后開始降解,這一現象在其他花卉作物中同樣存在,如蘭花(cv. Mystique)花瓣的花期黃酮醇含量是蕾期的1.9倍[31];WAN等[24]發現月季()品種‘Sun City’花瓣中主要黃酮醇化合物含量在花開放之前不斷積累,然后開始逐漸衰減。
花青素是廣泛分布于植物中的一種天然色素,其合成代謝隸屬于類黃酮代謝途徑[12-14,34],CHS是花青素苷合成的核心酶,DHK是關鍵的分支節點,下游酶往往具有底物特異性;本研究中4個品種的花青素苷均以多種糖基衍生物形式存在,表明下游葡萄糖基轉移酶(glycosyl transferases,GT)在牡丹花青素合成代謝途徑中較為活躍。FAN等[6]認為花青素的羥基化和甲基化是導致花色變紫或變藍的原因之一。參照類黃酮代謝途徑可知[12-13],芍藥素是由矢車菊素苷元及其上游化合物經過甲基化衍生合成,本研究中紫色品種‘洛陽紅’含有矢車菊素和芍藥素等多種花青素苷,藍色品種‘粉荷’含有Pg3g5g和Pn3g5g兩種花青素苷,而紅色品種‘迎日紅’和粉色品種‘趙粉’僅含有天竺葵素(Pg3g5g和Pn3g),表明牡丹中矢車菊素經甲基化反應產生芍藥素,這是形成藍色和紫色品種的重要因素。雖然本研究檢測到了楊梅素,但相對含量不高,表明DHK向二氫楊梅素(dihydromyricetin,DHM)的轉化途徑并不活躍。此外,未能檢出飛燕草素、矮牽牛素和錦葵素,表明無色飛燕草苷元下游合成途徑在牡丹中缺失。因此,可推斷DHK是牡丹花青素代謝途徑重要的分支節點,F3’H和DFR的不同酶促反應對牡丹不同花色的代謝途徑分支起決定性作用。
植物花色的形成受多種因素影響,如色素組成及含量、金屬離子含量、細胞pH、花瓣表皮細胞性狀等[35]。牡丹花色多樣,不同品種間花色差異明顯,結合前人研究及本研究結果,發現紫色品種和藍色花瓣中矢車菊素和芍藥素含量較高,紅色品種天竺葵素含量較高,白色品種幾乎不含有花青素,因此,復雜的花青素苷組成可能導致了牡丹品種花色的差異。一些牡丹品種開花過程中花色變化明顯,如‘金衣花臉’和‘霞光’在初開期分別呈現橙色和紅紫色,此后逐漸變為黃色和橙黃色,HPLC分析表明‘金衣花臉’僅含Pn3g5g一種花青素,‘霞光’含有3種花青素,在開花各時期花青素含量不斷降低[36]。此外,牡丹花器官中富含多種活性成分,如GUO等[37]對四川牡丹()和鳳丹()花瓣及雄蕊等4個部分中的活性物質成分進行分析,通過B16細胞活力測定發現牡丹花瓣提取物可有效降低黑色素生成。而XIE等[38]對35個鳳丹和紫斑牡丹品種的雄蕊進行物質鑒定,發現牡丹雄蕊中富含多酚類、總黃酮和花青素物質,其中紫斑牡丹品種‘紫二喬’雄蕊中多酚類物質含量最高。可見,不同花色牡丹品種中呈色物質多樣性較高,而花器官中活性物質分布同樣存在顯著差異,進一步弄清不同花青素苷組分及其分布規律對牡丹花色育種具有重要意義。
通過HPLC和LC-MS鑒定出6種花青素苷和12種類黃酮苷,不同顏色牡丹品種花瓣中花青素苷差異較大,紫色品種‘洛陽紅’花青素苷種類最多、含量最高,白色品種‘白雪塔’幾乎不含有花青素苷。類黃酮苷中芹菜素-5-葡萄糖苷、芹菜素己糖-葡萄糖苷和山奈酚-3,7-葡萄糖苷等3種物質含量較高。花青素苷在花朵開放期間不斷積累,而類黃酮苷存在先積累后降解的變化趨勢。
[1] Stern F C. A Study of The Genus Paeonia. London: Royal Horticulture Society, 1946.
[2] 李嘉玨, 張西方, 趙孝慶. 中國牡丹. 北京: 中國大百科全書出版社, 2011: 15-17.
Li J J, Zhang X f, Zhao X q. Chinese Peony. Beijing: Encyclopaedia of China Publishing House, 2011:15-17. (in Chinese)
[3] Cui H L, Chen C R, Huang N Z, Cheng F Y. Association analysis of yield, oil and fatty acid content, and main phenotypic traits inas an oil crop. The Journal of Horticultural Science and Biotechnology, 2018, 93(4): 425-432.
[4] 王蓮英, 袁濤. 中國牡丹品種圖志. 北京: 中國林業出版社, 1997: 25-28.
WANG L Y, YUAN T. Sequel of Chinese Tree Peony. Beijing: China Forestry Publishing House, 1997: 25-28. (in Chinese)
[5] WANG L S, SHIRAISHIA, HASHIMOTOF, AOKI N, SHIMIZU K, SAKATA Y. Analysis of petal anthocyanins to investigate flower colouration of Zhongyuan (Chinese) and daikon island (Japanese) tree peony cultivars.Journal of Plant Research, 2001, 114(1113): 33-43.
[6] FAN J L, ZHU W X, KANG H B, MA H L, TAO G J. Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree penoy cultivars. Journal of Functional Foods, 2012, 4(1): 147-157.
[7] BAO Y T, QU Y, LI J H, LI Y F, REN X D, MAFFUCCI K G, LI R P, WANG Z G, ZENG R.andantioxidant activities of the flowers and leaves fromand identification of their antioxidant constituents by UHPLC-ESI-HRMSnvia pre-column DPPH reaction. Molecules, 2018, 23(2): 392.
[8] LI C H, DU H, WANG L S, SHU Q Y, ZHENG Y R, XU Y J, ZHANG J L, ZHANG J, YANG R Z, GE Y X. Flavonoid composition and antioxidant activity of Tree Peony (Section) yellow flowers. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8496-8503.
[9] YANG Y, LI B, FENG C Y, WU Q, WANG Q Y, LI S S, YU X N, WANG L S. Chemical mechanism of flower color microvariation inwith yellow flowers. Horticultural Plant Journal, 2020, 6(3): 179-190.
[10] ZHAO D Q, TANG W H, HAO Z J, TAO J. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochemical and Biophysical Research Communications, 2015, 459(3): 450-456.
[11] JIA N, SHU Q Y, WANG L S, DU H, XU Y J, LIU Z A. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Scientia Horticulturae, 2008, 117(2): 167-173.
[12] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4): 733-749.
[13] 戴思蘭, 洪艷. 基于花青素苷合成和呈色機理的觀賞植物花色改良分子育種. 中國農業科學, 2016, 49(3): 529-542.
DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3): 529-542. (in Chinese)
[14] GROTEWOLD E. The genetics and biochemistry of floral pigments. Annual review of plant biology, 2006, 57: 761-780.
[15] SHI Q Q, LI L, ZHANG X X, LUO J R, LI X, ZHAI L J, HE L X, ZHANG Y L. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in. Molecules, 2017, 22(8): 1364.
[16] ZHANG Y Z, CHENG Y W, YA H Y, XU Z Z, HAN J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in Plant Science, 2015, 6: 964.
[17] QI Y, ZHOU L, HAN L L, ZOU H Z, MIAO K, WANG Y., a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (). Plant Physiology and Biochemistry, 2020, 154: 396-408.
[18] GU Z Y, ZHU J, HAO Q, YUAN Y U, DUAN Y W, MEN S Q, WANG Q Y, HOU Q Z, LIU Z A, SHU Q Y, WANG L S. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression ofin tree peony (). Plant & Cell Physiology, 2019, 60(3): 599-611.
[19] 于世林. 圖解高效液相色譜與應用. 北京: 科學出版社, 2009: 56-66.
YU S. Graphic High Performance Liquid Chromatography and Its Application. Beijing: The Science Publishing Company, 2009: 56-66. (in Chinese)
[20] YILDIRIM S, KADIOGLU A, SAGLAM A, YASAR A, SELLITEPE H E. Fast determination of anthocyanins and free pelargonidin in fruits, fruit juices, and fruit wines by high-performance liquid chromatography using a core-shell column. Journal of Separation Science, 2016, 39(20): 3927-3935.
[21] ZHANG J J, WANG L S, SHU Q Y, LIU Z A, LI C H, ZHANG J, WEI X L, TIAN D K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Scientia Horticulturae, 2007, 114(2): 104-111.
[22] SINGH R, WU B J, TANG L, LIU Z Q, HU M. Identification of the position of Mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (λmax) generated from an online diode array detector. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9384-9395.
[23] 張玲, 徐宗大, 湯騰飛, 張輝, 趙蘭勇. ‘紫枝’玫瑰(‘Zi zhi’)開花過程花青素相關化合物及代謝途徑分析. 中國農業科學, 2015, 48(13): 2600-2611.
ZHANG L, XU Z D, TANG T F, ZHANG H, ZHAO L Y. Analysis of anthocyanins related compounds and their biosynthesis pathways in‘Zi Zhi’ at blooming stages. Scientica Agricultura Sinica, 2015, 48(13): 2600-2611. (in Chinese)
[24] WAN H H, YU C, HAN Y, GUOX L, AHMAD S, TANG A Y, WANG J, CHENG T R, PAN H T, ZHANG Q X. Flavonols and carotenoids in yellow petals of rose cultivar (‘Sun City’): A possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4171-4181.
[25] CHEN S, XIANG Y, DENG J, LIU Y L, LI S H. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different Lotus () cultivars by HPLC-DAD- ESI-MSn. PLoS ONE2013, 8(4): e62291.
[26] LI Q, WANG J, SUN H Y, SHANG X. Flower color patterning in pansy (×Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiology and Biochemistry, 2014, 84: 134-141.
[27] WANG X, CHENG C, SUN Q L, LI F W, LIU J H, ZHENG C C. Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography. Journal of chromatography A, 2005, 1075(1): 127-131.
[28] KITDAMRONGSONT K, PPTHAVORN P, SWANGPOL S, WONGNIAM S, ATAWONGSA K, SVASTI J, SOMANA J. Anthocyanin composition of wild bananas in Thailand. Journal of Agricultural and Food Chemistry, 2008, 56(22): 10853-10857.
[29] STOCHMAL A, SIMONET A M, MACIAS F A, OLIVEIRA M A, ABREU J M, NASH R, OLESZEK W. Acylated apigenin glycosides from alfalfa (L.) var. Artal. Phytochemistry, 2001, 57(8): 1223-1226.
[30] POP R M, SOCACIU C, PINTEA A, BUZOIANU A D, SANDERS M G. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different carpathianL. varieties. Phytochemical Analysis, 2013, 24(5): 484-492.
[31] NAKATSUKA T, SUZUKI T, HARADA K, KOBAYASHI Y, DOHRA H, OHNO H. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis inhybrid flowers. Plant Science, 2019, 287: 110173.
[32] SUI X N, ZHANG Y, ZHOU W B.and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 2016, 21: 50-57.
[33] ZHANG C, WANG W N, WANG Y J, GAO S L, DU D N, FU J X, DONG L. Anthocyanin biosynthesis and accumulation in developing flowers of tree peony () ‘Luoyang Hong’. Postharvest Biology and Technology, 2014, 97: 11-22.
[34] MITCHELL K, MARKHAM K R, BOASE M R. Pigment chemistry and colour of pelargonium flowers. Phytochemistry, 1998, 47(3): 355-361.
[35] 趙昶靈, 郭維明, 陳俊愉. 植物花色形成及其調控機理. 植物學通報, 2005, 22(1): 70-81.
ZHAO C L, GUO W M, CHEN J Y. Formation and regulation of flower color in higher plants. Chinese Bulletin of Botany, 2005, 22(1): 70-81. (in Chinese)
[36] 楊琴, 袁濤, 孫湘濱. 兩個牡丹品種開花過程中花色變化的研究. 園藝學報, 2015, 42(5): 930-938.
YANG Q, YUAN T, SUN X B. Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars. Acta Horticulturae Sinica, 2015, 42(5): 930-938. (in Chinese)
[37] GUO L, YIN Z Y, WEN L, XIN J, GAO X, ZHENG X X. Flower extracts fromandinhibit melanin synthesis via Camp-REB-ssociated melanogenesis signaling pathways in murine B16 melanoma cells. Journal of Food Biochemistry, 2019, 43(4): e12777.
[38] XIE L H, Yan Z G, Li M C, TIAN Y, KILARU A, NIU L X, ZHANG Y L. Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC-based analysis. Industrial Crops and Products, 2020, 154: 112711.
Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages

1College of Architecture, Taiyuan University of Technology, Taiyuan 030024;2College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi
【】Tree peony (), one of the famous traditional flowers in China, is rich in flower colors and varieties. The composition content and structure of anthocyanins and flavonoids in different color cultivars and these dynamic changes at different blooming stages were studied, in order to lay a foundation for further investigation of the floral pigment mechanism and molecular breeding of tree peony.【】 Five different color cultivars of tree peony were chosen as materials. Anthocyanins and flavonoids in those petals of flowers at four different blooming stages, such as bud stage (S1), initial blooming stage (S2), blooming stage (S3) and wither stage (S4), were determined by high-performance liquid chromatography (HPLC) and mass spectrometric (LC-MS) detectors. Then, the difference of anthocyanins and flavonoids among these five cultivars was analyzed, and the regulation of changing density was summarized.【】In total, 6 anthocyanins and 12 flavonoids were described. However, the compounds were distributed different among different cultivars. The purple cultivar, Luoyanghong, had four anthocyanins, and the white cultivar of Baixuetai had no anthocyanin. Among the 12 flavonoids, the relative contents of apigenin-5-glucoside (7.18%-58.46%), apigenin hexo-glucoside (1.44%-43.72%) and kaempferol-3,7-glucoside (2.83%-43.44%) were higher than other compounds. In addition, the significant changes were observed among the five cultivars. During the blooming periods, the total anthocyanin content were constantly accumulated and dramatically increased at S3, then reached the highest at S4. However, the total content of flavonoids was increased firstly and then decreased. It should be noted that the variation trend of different varieties was obviously different. The flavonoids contents of Luoyanghong showed the highest value at S4 ((752.93±48.10) μg?g-1FW), and Zhaofen showed the highest value at S3 ((603.81±6.30) μg?g-1FW). Baixueta reached the highest value ((673.45±9.96) μg?g-1FW) at S2. But the other two cultivars, Yingrihong and Fenhe, reached the highest flavonoids content value at S1, with (525.88±22.38) μg?g-1FW and (740.56±16.08) μg?g-1FW, respectively.【】The anthocyanins and flavonoids content were significantly different among different color cultivars. The purple cultivar always showed higher anthocyanins contents than other varieties. And the white cultivar almost did not detect any anthocyanin, relatively. What’s more, the anthocyanins were constantly accumulated during flower blooming stage, meanwhile, the flavonoids were increased first and then gradually degraded after flower opening.
Tree peony; anthocyanins; flavonoids; floral color

10.3864/j.issn.0578-1752.2021.13.014
2020-08-28;
2020-11-08
山西省博士后專項經費(K461701006)、太原理工大學引進人才基礎研究開放課題(TUK2020105)
通信作者崔虎亮,E-mail:cuihuliang2005@126.com
(責任編輯 趙伶俐)