吉喆 劉璽蝶 呂姝叡 華淑蘭 許慧敏 陳夫山



摘要:近年來柔性應變傳感器發展迅速,目前在個性醫療、運動監測、智能可穿戴等領域均有著廣泛應用。隨著資源短缺、環境污染等問題的加劇,制備清潔綠色的柔性傳感器成為研究熱點。纖維素材料以其自身儲量豐富、可降解再生、易加工成多種結構等優勢,為柔性應變傳感器的制備和性能提升提供了新的發展方向。本文對近些年以纖維素材料制得的柔性應變傳感器的研究進行了總結,包括此類傳感器的制備材料、性能改良和應用前景,以期為纖維素基柔性應變傳感器的研究提供參考。
關鍵詞:纖維素材料;柔性應變傳感器;可穿戴
中圖分類號:TS79?? 文獻標識碼:A??? DOI:10.11980/j. issn.0254-508X.2021.12.014
Research Progress of Flexible Strain Sensors Based on Cellulose Materials
JI Zhe1,2,*?? LIU Xidie1?? LYU Shurui1?? HUA Shulan1?? XU Huimin2?? CHEN Fushan1
(1. College ofMarine Science and Bioengineering,Qingdao University of Science and Technology,Qingdao,Shandong Province,266042;2. Shandong Century Sunshine Paper Group Company Limited,Weifang,Shandong Province,262400)
(*E-mail:jizhe@qust. edu. cn)
Abstract :In recent years,studies have been developed rapidly in the field of flexible strain sensors because of their wide applications in per ? sonality medicine,sports detection,wearable intelligent device and other relevant fields . Owing to concerns of resource shortage and envi ? ronmental pollution issues,it becomes a hot topic to develop clean and green flexible strain sensors . Cellulose is a nearly inexhaustible natu ? ral material with many benefits such as renewable,biodegradable and easy to be processed into diversified structure/shape . With its excel? lent properties,cellulose materials provide a new study direction to prepare and improve performance of flexible strain sensors . In order to provide some references for the research,recent development in study of flexible strain sensor based on cellulose material,which includes material,performance improvement and its application prospect were reviewed in this paper .
Key words :cellulosic material;flexible strain sensor;wearable
傳感器是將溫度、濕度、聲、光等物理化學刺激按照一定規律轉化為電信號輸出的一種檢測裝置[1]。應變傳感器的傳感機理一般有壓阻式、電容式、壓電式、摩擦電式4種,其中壓阻式應變傳感器因結構簡單、機電性能高,應用更加廣泛[2]。然而,金屬和半導體材料制備的傳統應變傳感器靈敏度低、傳感范圍窄,不能滿足較大應變時的使用需求,且廢用器件難以生物降解,與綠色發展的理念相悖,因此環境友好型的柔性應變傳感器逐漸成為研究熱點。隨著柔性電子材料的發展,可穿戴柔性應變傳感器呈現出巨大的市場前景[3]。
纖維素是地球儲量最豐富的生物質材料,具有反應活性高、生物相容性好、可降解等優點[4],通過不同的制備工藝可將纖維素材料制備成包含一維(纖維和紗線)、二維(薄膜、紙張、織物)、三維(水凝膠、氣凝膠)多種形態的材料,并可以通過碳化等處理方式進一步轉化為導電碳材料[5]。經過處理后的纖維素材料,兼具基底和敏感元件的性能,是制備新型柔性應變傳感器的理想材料。本文綜述了纖維素材料在柔性應變傳感器制備及性能改良方面的相關研究,并對其未來發展方向進行了展望。
1 纖維素材料應用于傳感器制備
柔性應變傳感器主要由基底和敏感元件兩部分組成,如圖1所示。敏感元件最初僅指直接響應外界信息的部分,后隨著電子器件與集成技術的發展,敏感元件也兼具將被測信息轉化為電信號的功能[6]。近年來,為開發低成本、環境友好型的柔性電子器件,纖維素材料逐漸應用于柔性應變傳感器的制備。
1.1? 纖維素材料用作基底
柔性基底作為柔性應變傳感器的基本結構,應具備良好的機械性能用于支撐傳感元件,以實現傳感器在各種彎曲情況下的精準檢測。纖維素分子上3個活潑的羥基能夠形成較強的分子內和分子間氫鍵網絡結構,這種結構使纖維素材料具有較高的結晶度和一定的取向性,大大增強了其機械性能[7]。此外,這種結構也限制了基底的熱膨脹[8],使得纖維素材料具有良好的熱穩定性,減少了使用過程中產生熱量對傳感器壽命的影響[9]。與傳統基底材料相比,纖維素材料具有獨特的多孔結構,易與各種敏感材料進行有效的結合,有助于提高傳感器靈敏度[10]。表1總結了纖維素材料應用于柔性應變傳感器基底的研究實例。
1.2? 纖維素材料用作敏感元件
敏感元件作為柔性應變傳感器的核心,需兼具高機械性能和高導電性能。雖然纖維素材料本身不具備高導電性,但利用高溫碳化的方式可將其轉化為高導電的碳纖維網絡。一方面簡化了敏感元件的制備過程,更具規?;a的潛力;同時生產材料價廉易得,降低了柔性應變傳感器生產制備的門檻。另一方面,這種傳感器更易生物降解,符合綠色化學的理念。此外,纖維素材料加工而成的紙張等產品,通過已有成熟的生產工藝,便可設計出具有高度各向異性的微觀結構,如定向排列的纖維及瓦楞結構,能夠檢測和分辨出不同方向上的應變,實現多維度傳感[21]。表2總結了纖維素材料應用于柔性應變傳感器敏感元件的研究實例。
2 優化傳感器性能
傳感器性能的優越性主要從靈敏度、應變范圍、響應時間、耐折度等方面進行衡量。引入具有高導電性能的材料和設計精巧的微結構是提高柔性傳感器性能的有效策略。然而金屬基和碳基原材料成本高昂、微結構制造過程復雜、設備生物相容性和生物降解性差等問題極大地阻礙了這類傳感器的大規模生產應用。纖維素材料綠色易得,且自身具有優異的機械性能。基于此,本文總結了應用纖維素材料對傳感器性能進行改良的相關研究成果。
2.1? 提高傳感器機械性能
2.1.1? 提高傳感器耐折度
耐折度是指傳感器在循環使用過程中恢復原有電性能的能力,是影響傳感器使用壽命的關鍵因素。在電阻變化率基本保持不變的條件下(響應損失<10%),常以傳感器循環應變的次數衡量其耐折度。隨著應變的產生與釋放,傳感器內部的導電網絡會發生可逆的破壞與重構,保證此過程中導電網絡不因應變而發生較大損害,是傳感器具有良好耐折度的關鍵[2,25-26]。如圖2所示,Zheng 等人[27]將石墨烯納米片浸漬沉積在天然棉織物上,再用 PDMS 進行封裝,得到的傳感器可在30%的應變下循環拉伸1萬次。San? thiago等人[28]通過炭黑和醋酸纖維素的結合,制備了改性油墨,以此為基礎制得炭黑履帶傳感器可彎折超過2萬次。Wang 等人[29]將普通棉線與聚氨酯相結合,制成復合紗線,再將其反復涂覆單壁碳納米管( SW? CNTs )后制得的傳感器,可在40%應變下拉伸30萬次。
2.1.2? 提高傳感器拉伸性能
優異的拉伸性能是應變傳感器應用于實際的基礎條件,拉伸性能的優劣會直接影響人體穿戴舒適程度。通過利用與設計原材料的結構來增強傳感器的拉伸性能是常用的方法之一。一維材料具有良好的拉伸性能,可以實現>100%的大拉伸范圍。如圖3(a)所示,Cai 等人[30]通過原位聚合的方法制備了用聚吡咯(PPy)沉積的棉/碳納米管紗線,由于紗線本身作為一維材料具有良好的拉伸性,加上為之設計的獨特彈簧結構,使其具有更優異的拉伸性能,在外力作用下可拉伸至400%。
纖維素材料可通過作為基底改良傳感器的力學性能,也可以改性后將其摻入敏感元件中來提高傳感器的力學性能。Zhang 等人[31]將多壁碳納米管 ( MW ? CNTs )與纖維素進行接枝改性,然后與纖維素復合形成 MWCNTs-纖維素/纖維素復合材料,在纖維素表面的共價接枝促進了 MWCNTs 的分散(圖3(b)),從而提高了其抗拉強度。與使用相同用量 MWCNTs (10%)的 MWCNTs/纖維素復合纖維相比,該方法制備的復合纖維抗拉強度提高了106.8%(圖3(c)、圖3(d))。
2.2? 提高傳感器電學性能
2.2.1? 提高傳感器靈敏度
靈敏度反映了傳感器對應變的響應能力,高靈敏度代表傳感器在微小應變下即可發生顯著的結構變化,實現電信號輸出[26]。常用特征參數 GF值來定量表示傳感器靈敏度的大小,隨 GF值的增加,傳感器的靈敏度增高。
Xu 等人[32]利用纖維素納米纖絲( CNF)作分散劑,配置了均勻的熱塑性聚氨酯( TPU)/CNF@碳納米管( CNT)懸浮液,并將其在80℃下蒸發成膜制成納米復合傳感器。當 CNF 的質量分數為3%時,傳感器在200%的應變下可達到 GF≈49.1的靈敏度。其中,CNF對其靈敏度的提高起到了重要作用:①增加了碳納米管的分散性,減少導電網絡接觸面積,使得傳感器具有較高靈敏度;②增強了導電填料 CNT 與聚合物基底 TPU 之間的相互作用,使施加在 TPU 基底上的應力更易傳遞到 CNT 導電網絡上;③將多個細小的碳納米管束沿其長軸連接起來,增大了 CNT 整體的長徑比,使其在較小應變下即可引起電阻率的較大變化(圖4(a))。
但上述研究采用溶液法制備導電網絡需要較多填料,成本較高。在此基礎上,Zhu 等人[33]改用纖維素納米晶體( CNC)作分散劑制備 CNC/CNT 懸浮液,通過靜電紡絲的方法直接與多孔 TPU 膜進行組裝,制得柔性應變傳感器可在500%的寬應變下達到 GF≈321的高靈敏度。通過設計 TPU 基底表面的多孔結構,使導電網絡得以被限制在多孔結構中,進一步增加了導電填料與基底之間的相互作用,以低成本的方式大幅提高了傳感器的靈敏度,見圖4(b)。
2.2.2降低傳感器響應時間
響應時間是應變施加到引起電阻變化所用時間,是定量判斷傳感器滯后性的重要參數指標。聚合物基底與導電材料之間模量的不匹配以及聚合物的黏彈性均可導致傳感器響應時間的延長,出現滯后現象。因此,增加導電材料與柔性基底的結合力有助于降低傳感器的滯后效應[26]。
如圖5所示, Xu 等人[34]制備的還原氧化石墨烯( rGO )/多孔反蛋白石乙酰纖維素( IOAC )應變傳感器在拉伸和壓縮條件下的響應時間約為0.15 s 。Jing 等人[35]采用旋轉凝固浴再生+濕法紡絲的方式制備了碳納米管(CNTs)纖維,再用熱塑性聚氨酯( TPU )為支撐制備 CNTs/纖維素@TPU 應變傳感器,在彎曲應變下的快速響應時間僅為100 ms,在拉伸應變下的快速響應時間僅為65 ms。Wang 等人[36]以天然細菌纖維素( BC )和可聚合的深共晶溶劑( PDES )為原料制成 BC-PDE 離子導體,與 PET 薄膜組裝成多功能應變傳感器,其在壓縮和釋放傳感器時的響應時間可縮短到14 ms和35 ms。
2.2.3? 擴大傳感器應變范圍
應變范圍是決定應變傳感器工作范圍的關鍵,為提高應變傳感器對跳躍、揮臂、下蹲等大幅度運動的檢測能力,擴大傳感器應變范圍,需要避免大拉伸下導電結構的不可逆破壞。Zhang 等人[37]制備了一種基于碳化平紋棉織物的應變傳感器,在0~80%的應變范圍內 GF 值為25;在 80%~140%的寬應變范圍內 GF 值為64。碳化后棉纖維因保持了原有棉織物的平紋結構,形成了特殊的層次化導電網絡,可在承受較大應變時仍保持導電路徑的完整性,使應變傳感器在寬應變范圍內表現出高靈敏性和可重復性,可充分滿足人體運動的監測需要。
3 應用前景
與傳統電子器件相比,基于纖維素材料的柔性應變傳感器有著向“電子皮膚”發展的趨勢,在自供電和自愈合方向有著廣闊的應用前景,如圖6所示。
3.1? 自供電式傳感器
自供電式傳感器是通過主動收集外部環境的微小能量來緩解傳感器需要頻繁充電的現狀。2012年,王中林團隊發明了摩擦納米發電機(triboelectric nanogenerator ,TENG ),實現了對低頻微能量的收集和高效利用,使得自供電式傳感器成為可能[42]。對于具有自供電功能的應變傳感器,通常使用一定外加壓力和頻率下的開路電壓來衡量其供電能力的好壞。許多研究者在原有摩擦材料的基礎上,通過各種方式提高傳感器的供電能力,總結如表3所示。
TENG 的電性能主要取決于其材料表面的電荷密度,而納米纖維素纖維( CNF )的納米結構可以增大摩擦接觸面積,提高摩擦接觸的有效性,且具有易改性、高摩擦性、強導電性等特性,因此其改性后的產物常用作正摩擦電材料;而氟化乙烯丙烯共聚物( FEP )因為分子上擁有較多的氟離子,對電子的吸引力較強,常用于 TENG 的負摩擦電材料。
3.2? 自修復式傳感器
在實際生活中,人體運動引起的摩擦、彎曲等給可穿戴設備帶來不可逆的損傷,而這些損傷極可能引起器件電學性能惡化甚至失效,從而降低使用壽命,因此實現裂紋或斷面的自修復具有重要意義。自修復式傳感器受到外力損傷時,其內部動態可逆的共價鍵/非共價鍵可以自發地或者在外界刺激(如熱、光照等)下重新鍵合,從而修復損傷,有效延長傳感器的使用壽命[47]。
以納米纖維素為例,納米纖維素因比表面積大、含有豐富的羥基,在加入傳感器后,可使傳感器材料內部的鍵合效率提高[48],有利于多重氫鍵網絡的形成,增強傳感器的自愈合能力。Cao 等人[41]利用羧基纖維素納米晶體( C-CNC )與殼聚糖( CT )修飾的環氧天然膠乳,形成了一種超分子彈性體。C-CNC 中豐富的羧基和羥基可與 CT 分子鏈中大量的氨基、乙?;土u基相互作用,形成類似 DNA 結構的多重氫鍵網絡,使得此彈性基體可以在15 s 內完成自愈,表現了極強的愈合效率。若將導電材料封裝入此彈性體中,則可望實現傳感器的快速自愈。
4結束語
近年來,纖維素材料因具有可降解再生、生物相容性好、柔性較好等優勢,在制備高性能、多功能的柔性應變傳感器方面有著巨大的發展潛力。一方面,天然纖維素材料如紙張、棉織物等價廉質軟,可作為柔性傳感器基底使用;天然纖維素材料經高溫碳化后,可以進一步轉變為具有高導電性能的碳基材料,用作柔性應變傳感器的敏感元件,拓寬了其在柔性傳感器的應用范圍。另一方面,納米纖維素與可再生纖維素憑借獨特的結構特征,實現了對傳感器性能的提高。
未來基于纖維素材料的柔性應變傳感器可在以下幾個方面深入研究:①開發多功能的纖維素基敏感元件,滿足實際生活中的溫度、濕度等多維度信息的同時監測。②通過改性制備低成本的超疏水纖維素基材料,開發自清潔型的傳感器,解決傳感器易受人體汗液污染的問題。③對柔性應變傳感器進行精密化結構設計,實現傳感功能的調控和優化。
參考文獻
[1] 秦文峰,王新遠,李亞云,等. GR/CNT-PDMS柔性應變傳感器的制備與性能[J].微納電子技術,2020,57(10):804-809.
QIN W F,WANG X Y,LI Y Y,et al. Preparation and Properties of GR/CNTs-PDMS Flexible Strain Sensor [J]. Micronanoelectronic Technology,2020,57(10):804-809.
[2] 孫力君.基于石墨烯/柔性紡織物復合材料的應變傳感器的研究[ D].南京:南京郵電大學,2020.
SUN L J. Research on Strain Sensor Based on Graphene/Flexible Fabric Composite [ D]. Nanjing :Nanjing University of Posts and Telecommunications,2020.
[3] 金欣,旭東,王聞宇,等.基于聚二甲基硅氧烷柔性可穿戴傳感器研究進展[J].材料工程,2018,46(11):13-24.
JIN X,XU D,WANG W Y,et al. Research Progress in Flexible Wearable Strain Sensors Based on Polydimethysiloxane[J]. Journal of Materials Engineering,2018,46(11):13-24.
[4] 張浩,朱明.纖維素基柔性壓力傳感器及其性能表征[J].中國造紙學報,2020,35(1):26-32.
ZHANG H,ZHU M. Preparations and Characterization of Flexible Pressures Sensors Based on Cellulosic Substrate[J]. Transactions of China Pulp and Paper,2020,35(1):26-32.
[5]? CHEN Z,YAN T,PAN Z. Review of Flexible Strain Sensors Basedon? Cellulose? Composites? for? Multi-faceted? Applications [J]. Cellulose,2020,28(2):1-31.
[6] 劉少強,張靖.傳感器設計與應用實例[M].北京:中國電力出版社,2008:2-3.
LIU S Q,ZHANG J. Design and Application of Sensor[M]. Bei? jing:China Electric Power Press,2008:2-3.
[7] 黃進,夏濤.生物質化工與材料[M].北京:化學工業出版社,2018:173-174.
HUANG J,XIA T. Biomass Chemical Engineering and Materials[ M]. Beijing:Chemical Industry Press,2018:173-174.
[8]? Alain, ?Dufresne. Preparation? and? Properties? of? CelluloseNanomaterials[J]. Paper and Biomaterials,2020,5(3):1-13.
[9] 關麗霞,許軍.柔性顯示用紙質基板的研究進展[J].液晶與顯示,2018,33(5):365-374.
GUAN L X,XU J. Research Progress of Paper Substrate in Flexible Display[J]. Chinese Journal of Liquid Crystals and Displays,2018,33(5):365-374.
[10] 馮魏良,黃培.柔性顯示襯底的研究及進展[J].液晶與顯示,2012,27(5):599-607.
FENG W L,HUANG P. Advances in Flexible Displays Substrates [J]. Chinese Journal of Liquid Crystals and Displays,2012,27(5):599-607.
[11]? TAI Y,Lubineau G. Double ? twisted Conductive Smart ThreadsComprising a Homogeneously and a Gradient ? coated Thread for Multidimensional Flexible Pressure?sensing Devices[J]. Advanced Functional Materials,2016,26(23):4078-4084.
[12]? LI J P,WANG B,GE Z,et al. Flexible and Hierarchical 3DInterconnected? Silver? Nanowires/Cellulosic? Paper-Based Thermoelectric Sheets with Superior Electrical Conductivity and Ultrahigh Thermal Dispersion Capability [J]. ACS Appl Mater Interfaces,2019,11(42):39088-39099.
[13]? LIAO X Q,LIAO Q L,YAN X Q,et al. Flexible and HighlySensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor[J]. Advanced Functional Materials,2015,25(16):2395-2401.
[14]? QI H,Schulz B,Vad T,et al. Novel Carbon Nanotube/celluloseComposite Fibers as Multifunctional Materials [J]. ACS Applied Materials & Interfaces,2015,7(40):22404-22412.
[15]? CHEN Y,P?TSCHKE P,PIONTECK J,et al. Smart Cellulose/graphene Composites Fabricated by in Situ Chemical Reduction of Graphene Oxide for Multiple Sensing Applications [J]. Journal of Materials Chemistry A,2018,6(17):7777-7785.
[16]? MUN S,ZHAI L D,MIN S-K,et al. Flexible and TransparentStrain Sensor made with Silver Nanowire – coated Cellulose [J]. Journal of Intelligent Material Systems and Structures ,2015,27(8):1011-1018.
[17]? ULLRICH J,EISENREICH M,ZIMMERMANN Y,et al. Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors [J]. Materials (Basel),doi:10.3390/ma13225150.
[18]? FU W L,DAI Y Q,MENG X Y,et al. Electronic Textiles Basedon Aligned Electrospun Belt-like Cellulose Acetate Nanofibers and Graphene Sheets:Portable,Scalable and Eco-friendly Strain Sensor [J]. Nanotechnology,doi:10.1088/1361-6528/aaed99.
[19]? WANG Q H,PAN X F,GUO J J,et al. Lignin and CelluloseDerivatives-induced? Hydrogel? with? Asymmetrical? Adhesion, Strength,and Electriferous Properties for Wearable Bioelectrodes and Self-powered Sensors[J]. Chemical Engineering Journal,doi:10.1016/j. cej.2021.128903.
[20]? GUO T Y,WAN Z M,LI D G,et al. Intermolecular Self-assemblyof? Dopamine-conjugated? Carboxymethylcellulose? and? Carbon Nanotubes? toward? Supertough? Filaments? and? Multifunctional Wearables [J]. Chemical Engineering Journal ,doi:10.1016/j. cej.2021.128981.
[21]? CHEN S,SONG Y J,DING D Y,et al. Flexible and AnisotropicStrain? Sensor? based? on? Carbonized? Crepe? Paper? with? Aligned Cellulose? Fibers [J].? Advanced? Functional? Materials ,doi:10.1002/adfm.201802547.
[22]? ZHANG M,WANG C,WANG H,et al. Carbonized Cotton Fabricfor? High-performance? Wearable? Strain? Sensors [J].? Advanced Functional Materials,doi:10.1002/adfm.201604795.
[23]? LI Y Q,HUANG P,ZHU W B,et al. Flexible Wire-shaped StrainSensor from Cotton Thread for Human Health and Motion Detection[J]. Scientific Reports,2017,7(1):4373-4395.
[24]? CHEN Z,ZHUO H,HU Y,et al. Wood ? derived Lightweight andElastic Carbon Aerogel for Pressure Sensing and Energy Storage[J]. Advanced Functional Materials,doi:10.1002/adfm.201910292.
[25]? 章婉琪,宋萬誠,姜寬,等.基于彈性聚合物復合材料的壓阻式柔性應變傳感器研究進展[J].合成橡膠工業,2020,43(1):2-8.
ZHANG W Q,SONG W C,JIANG K,et al. Research Progress of Piezoresistive Flexible Strain Sensor based on Elastic Polymer Com ? posites[J]. China Synthetic Rubber Industry,2020,43(1):2-8.
[26]? 郭茹月,鮑艷.二維導電材料/柔性聚合物復合材料基可穿戴壓阻式應變傳感器的研究進展[J].精細化工,2021,38(4):649-661+859.
GUO R Y,BAO Y. Research Progress on Wearable Piezoresistive Strain? Sensors? based? on? Two-dimensional? Conductive? Materials/Flexible Polymer Composites[J]. Fine chemicals,2021,38(4):646-661+859.
[27]? ZHENG? Y ,LI? Y ,ZHOU? Y ,et? al. High-performance? WearableStrain Sensor based on Graphene/Cotton Fabric with High Durability and Low Detection Limit[J]. ACS Applied Materials & Interfaces,2019,12(1):1474-1485.
[28]? Santhiago? M ,Corre?a? C? C,Bernardes? J? S ,et? al. Flexible? andFoldable Fully-printed Carbon Black Conductive Nanostructures on Paper? for? High-performance? Electronic , Electrochemical , and Wearable Devices[J]. ACS Applied Materials & Interfaces,2017,9(28):24365-24372.
[29]? WANG Z,HUANG Y,SUN J,et al. Polyurethane/Cotton/CarbonNanotubes? Core-spun? Yarn? as? High? Reliability? Stretchable? Strain Sensor for Human Motion Detection [J]. ACS Applied Materials & Interfaces,2016,8(37):24837-24843.
[30]? CAI G,HAO B,LUO L,et al. Highly Stretchable Sheath – coreYarns for Multifunctional Wearable Electronics [J]. ACS Applied Materials & Interfaces,2020,12(26):29717-29727.
[31]? ZHANG S,ZHANG F,PAN Y,et al. Multiwall-carbon-nanotube/Cellulose? Composite? Fibers? with? Enhanced? Mechanical? and Electrical? Properties? by? Cellulose? Grafting [J]. RSC? Advances,2018,8(11):5678-5684.
[32]? XU? S , YU? W , JING? M , et? al. Largely? Enhanced? StretchingSensitivity? of? Polyurethane/Carbon? Nanotube? Nanocomposites? Via Incorporation? of Cellulose? Nanofiber[J]. The Journal? of Physical Chemistry C,2017,121(4):2108-2117.
[33]? ZHU? L ,? ZHOU? X ,? LIU? Y ,? et? al.? Highly? Sensitive,Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of? Carbon? Nanotubes/Cellulose? Nanocrystal? into? Electrospun Polyurethane Membranes[J]. ACS Applied Materials & Interfaces,2019,11(13):12968-12977.
[34]? XU H,LU Y F,XIANG J X,et al. A Multifunctional WearableSensor? based? on? a? Graphene/Inverse? Opal? Cellulose? Film? for Simultaneous,in Situ Monitoring of Human Motion and Sweat[J].Nanoscale,2018,10(4):2090-2098.
[35]? JING? C , LIU? W , HAO? H , et? al. Regenerated? and? Rotation-induced? Cellulose-wrapped? Oriented? CNT? Fibers? for? Wearable Multifunctional? Sensors [J]. Nanoscale ,2020,12(30):16305-16314.
[36]? WANG M,LI R,FENG X,et al. Cellulose Nanofiber-reinforcedIonic Conductors for Multifunctional Sensors and Devices[J]. ACS Applied Materials & Interfaces,2020,12(24):27545-27554.
[37]? ZHANG M,WANG C,WANG H,et al. Carbonized Cotton Fabricfor? High-performance? Wearable? Strain? Sensors [J].? Advanced Functional Materials,doi:10.1002/adfm.201604795.
[38]? FU? Q , CUI? C , MENG? L , et? al. Emerging? Cellulose-derivedMaterials:A? Promising? Platform? for? the? Design? of? Flexible Wearable Sensors toward Health and Environment Monitoring[J]. Materials Chemistry Frontiers,2021,5(5):2051-2091.
[39]? 張弛,付賢鵬,王中林.摩擦納米發電機在自驅動微系統研究中的現狀與展望[J].機械工程學報,2019,55(7):89-101.
ZHANG C,FU X P,WANG Z L. Review and Prospect of Tribo? electric Nanogenerators in Self-powered Microsystems[J]. Journal of Mechanical Engineering,2019,55(7):89-101.
[40]? MI H Y,JING X,ZHENG? Q,et al. High-performance FlexibleTriboelectric? Nanogenerator? Based? on? Porous? Aerogels? and Electrospun? Nanofibers? for? Energy? Harvesting? and? Sensitive? Self- powered Sensing[J]. Nano Energy,2018,48:327-336.
[41]? CAO? J ,LU? C ,ZHUANG? J ,et? al. Multiple? Hydrogen? BondingEnables? the? Self-healing? Of? Sensors? for? Human – machine Interactions [J]. AngewandteChemie International Edition,2017,56(30):8795-8800.
[42]? 丁亞飛,陳翔宇.基于摩擦納米發電機的可穿戴能源器件[J].物理學報,2020,69(17):8-27.
DING Y F,CHEN X Y. Triboelectric Nanogenerator Based Wear? able Energy Harvesting Devices[J]. Acta PhysicoSinica,2020,69(17):8-27.
[43]? CUI P,Parida K,LIN M F,et al. Transparent,Flexible CelluloseNanofibril-phosphorene? Hybrid? Paper? as? Triboelectric? Nanogene ? rator [J].?? Advanced? Materials? Interfaces ,doi: 10.1002/ admi.201700651.
[44]? YAO C,YIN X,YU Y,et al. Chemically Functionalized NaturalCellulose? Materials? for? Effective? Triboelectric? Nanogenerator Development[J]. Advanced? Functional? Materials,doi:10.1002/ adfm.201700794.
[45]? ZHENG? Q ,FANG? L ,GUO? H ,et? al. Highly? Porous? PolymerAerogel? Film ? based? Triboelectric? Nanogenerators [J]. Advanced Functional Materials,doi:10.1002/adfm.201706365.
[46]? ZHANG C,LIN X,ZHANG N,et al. Chemically FunctionalizedCellulose? Nanofibrils-based? Gear-like? Triboelectric? Nanogenerator for? Energy? Harvesting? and ?Sensing [J].? Nano? Energy ,doi:10.1016/j. nanoen.2019.104126.
[47]? ZHANG? T ,BAI? Y ,SUN? F. Recent? Advances? in? Flexible? Self-healing? Materials? and? Sensors [J]. Scientia? Sinica? Informationis,2018,48(6):650-669.
[48]? 盧麒麟,謝帆鈺,康明明,等.納米纖維素自愈合材料的研制[J].紡織科技進展,2021(3):18-25.
LU Q L,XIE F Y,KANG M M,et al. Development of Self-healing Nanocellulose Materials[J]. Progress in Textile Science & Technol? ogy,2021(3):18-25.
(責任編輯:劉振華)