999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中國典型湖泊四大類抗生素污染特征

2021-09-23 12:32:40張晶晶王沛芳
中國環境科學 2021年9期
關鍵詞:污染

張晶晶,陳 娟*,王沛芳,王 超,高 寒,胡 煜

中國典型湖泊四大類抗生素污染特征

張晶晶1,2,陳 娟1,2*,王沛芳1,2,王 超1,2,高 寒1,2,胡 煜1,2

(1.河海大學,淺水湖泊綜合治理與資源開發教育部重點實驗室,江蘇 南京 210098;2.河海大學環境學院,江蘇 南京 210098)

基于已有文獻資料數據,以中國東部平原湖區(31個),蒙新湖區(4個),二龍湖,青海湖及撫仙湖共38個典型湖泊為研究對象,總結分析四大類常用抗生素(四環素類,磺胺類,喹諾酮類和大環內酯類)在湖泊水體和沉積物中的污染特征.結果表明,四大類抗生素污染在中國典型湖泊中普遍存在,其中水體中抗生素污染水平依次為磺胺類(2147ng/L)>喹諾酮類(1458ng/L)> 四環素類(481ng/L)> 大環內酯類(205ng/L),沉積物中抗生素的分布具有垂向差異特征,表層沉積物抗生素濃度高于深層沉積物.抗生素檢出濃度在不同湖區間存在較大差異,其中東部平原湖區水體和沉積物中抗生素濃度顯著高于其他湖區.相比入湖河流,湖區(如太湖貢湖灣和青海湖)水體中抗生素污染相對較高,表明湖區可能作為抗生素的匯集地.湖泊水體中的抗生素濃度分布呈現季節性差異,如太湖水體中抗生素濃度在春,夏及冬季高于秋季,而鄱陽湖,白洋淀和二龍湖在旱季(4月)高于雨季(8月);而湖泊沉積物中抗生素季節性差異較不明顯,這可能與抗生素在沉積物中的遷移性有關.

抗生素;湖泊;污染特征;湖泊分區

抗生素是由微生物產生的具有抗病原體或其他活性的一類次級代謝產物,已被廣泛應用于人和動物疾病的防治,或是添加于飼料中促進動物生長發育.自首次發現青霉素以來,抗生素的合成,生產和使用成為常態.由于抗生素在極低濃度下依然具有活性,并且會誘導微生物產生耐藥性[1],對環境中微生物群落的結構和功能造成損害,現已被公認為環境中的新型污染物.自然環境中大約有200~220種抗生素,根據其不同的功能化學結構,抗生素可分為10大類:氨基糖苷類,β-內酰胺類,林可酰胺類,大環內酯類(MLs),多肽類,喹諾酮類(QNs),磺胺類(SAs),四環素類(TCs)和氯霉素類等[2],其中,SAs, TCs, QNs, MLs是中國消費量最大的四類抗生素[3-4].抗生素可以通過各種途徑進入到環境中,抗生素制造業,醫院,污水處理廠,畜牧業等均是環境中抗生素的潛在貢獻者[5].研究顯示,人體或動物攝入抗生素后不能將它完全吸收,大部分抗生素以母體化合物或代謝產物的形式通過排泄物進入環境中[6].抗生素在環境中遷移轉化的最終歸宿是水體[7],進入水體的抗生素會吸附在懸浮顆粒上并沉降至沉積物中[8],加大其分解難度[9].自然流域沉積物中的抗生素濃度一般為納克(ng)級,但各流域水體周邊生產消費的抗生素總量存在較大差異,可能導致不同流域沉積物中的抗生素分布差異顯著[10].近年來,在世界各地的河流,湖泊,海灣和海岸沿岸[11-17]中均發現了多種抗生素,其中城市溪流[18]以及牲畜和水產養殖場周圍的地表水中抗生素濃度相對較高[19].湖泊作為重要水生態系統,其環境質量與人類健康息息相關.目前已有研究主要集中在湖泊抗生素的污染現狀及生態影響,但大多局限于單個或少數幾個湖泊,且研究的空間和時間跨度較小,缺乏對中國湖泊抗生素污染特征的系統認識,成為影響中國湖泊抗生素生態風險評估和科學控制措施制定的瓶頸問題.本文根據已有文獻資料,以我國東部平原湖區(31個),蒙新湖區(4個)中的典型湖泊及位于東北平原與山地湖區的二龍湖,位于青藏高原湖區的青海湖和位于云貴高原湖區的撫仙湖為研究對象,分析探明四大類常用抗生素(SAs, TCs, QNs, MLs)在湖泊水體和沉積物中的污染特征,對比揭示不同湖區,不同介質,不同季節的污染水平差異,為湖泊抗生素的污染控制與風險評估提供數據支撐,為湖泊抗生素的科學治理提供參考依據.

1 數據來源與分析方法

本文基于中國知網(http://www.cnki.net/)和Web of Science(http://apps.webofknowledge.com)數據庫平臺,選擇關鍵詞“antibiotics”+“lake”(包括具體湖泊名稱)作為檢索策略,檢索時間范圍為2000年1月至2020年10月,篩選針對中國湖泊抗生素的研究,最終獲得有效論文74篇,包括中文32篇,英文42篇,涉及不同湖區38個湖泊,覆蓋14個省份與直轄市,不同湖區抗生素相關研究數量占比見圖1.參考Xu等[20]對天然湖泊抗生素研究的數據分析方法,湖區及大類抗生素總污染水平計算方法為加權平均法,湖泊總污染水平計算方法為不同種類抗生素濃度值相加.使用Origin 8.5 軟件繪制典型湖泊四大類抗生素分布差異的箱式圖,并且使用SPSS 22.0軟件(SPSS Inc., Chicago, IL, USA)中的Pearson相關性分析方法揭示不同典型湖泊四大類抗生素分布的相關性.

圖1 中國不同湖區抗生素相關研究數量占比

2 典型湖泊水體抗生素污染特征

總體而言,東部平原湖區的抗生素污染水平高于其他湖區湖泊.東部平原湖區湖泊面積約占全國湖泊總面積的27.5%,是中國湖泊分布密度最大的地區之一.該區域內湖泊水深較淺,生物生產力較高,種群類型和生態系統較為復雜,受人類活動影響強烈,是中國湖泊抗生素現狀研究涉及最多的區域.某一大類抗生素中的不同抗生素也會因為其不同的環境行為(例如,吸附,光解和生物降解效應)導致其檢出頻率不同,如NOR的檢出率高于OFL[21].四大類抗生素的總污染水平高低順序依次是Sas (2147ng/L)>QNs (1458ng/L)>TCs(481ng/L)>MLs(205ng/L).

2.1 磺胺類抗生素(SAs)污染特征

SAs具有抗菌譜廣,價格低廉,化學性質穩定,使用方便等優點,被廣泛用于牲畜養殖業中,是使用量最大的獸用抗菌藥之一.調查表明常用的獸用SAs主要是磺胺嘧啶(SDZ),磺胺間甲氧嘧啶,磺胺二甲嘧啶,磺胺氯噠嗪,磺胺氯吡嗪等,其中SDZ使用量較高[22].SAs在水體中具有較好的溶解性和化學穩定性,是自然水環境中最常見的抗生素類藥物.由于SAs的抑菌性較強,導致微生物對它的降解作用偏弱,在環境中主要通過化學降解,水解等非生物作用消減去除.在我國五大湖區的38個典型湖泊水體中均檢出SAs,其中磺胺甲惡唑(SMX), SDZ,磺胺甲嘧啶(SMZ),磺胺塞唑(STZ)和甲氧芐氨嘧啶(TMP)為主要抗生素類型.湖泊水體中單種SA濃度范圍為n.d.~771ng/L,不同湖泊水體中SAs總污染濃度依次為二龍湖(2017~2018年,771ng/L)>龍感湖(2018年,659ng/L)>太湖(2017年,577ng/L)>月湖(2017年,270ng/L)>洪湖(2015年,243ng/L)>鄱陽湖(2014~2015年,126ng/L);不同湖區SAs總平均污染濃度依次是東部平原湖區(1308ng/L)>二龍湖(771ng/L)>蒙新湖區(65.92ng/L)>青海湖(1.82ng/L)>撫仙湖(0.12ng/L)(表1).

表1 湖泊水體中主要磺胺類抗生素檢出濃度范圍(ng/L)

注:-:無檢測數據;n.d.:低于檢出限.

圖2 典型湖泊水體中磺胺類抗生素的濃度比較

箱體上不同字母a,b和c代表p<0.05,即差異顯著

如圖2所示,在選取的5個典型湖泊中,SAs在固城湖與鄱陽湖及洞庭湖與鄱陽湖之間存在顯著分布差異.SAs在湖泊水體中的高污染水平,與其在水產養殖中大量使用有關[47].Li等[48]于2017年6月(雨季),2017年10月(旱季)和2018年5月在二龍湖共采集了69個表層水體樣品,分析了五種SAs的污染特征,發現SMX的濃度范圍為67.85~2231ng/L,平均濃度為771ng/L,高于中國東北地區抗生素污染嚴重的飲馬河流域.二龍湖總面積的40%以上為水產養殖區,且遼源市的生活污水和工業廢水大部分出水排入二龍湖,這可能是二龍湖SMX嚴重污染的原因[46].相比河流中SMX的檢出濃度(中國長江(2018年):3.86ng/L,巴西Barigui河(2019年):3.80 μg/L[49-50],中國湖泊中SMX污染水平較高.而在肯尼亞內羅畢河(2014年)的SMX檢出濃度高達13800ng/L,與沿岸高人口密度,抗生素大量消費且生活污水直排入河有關[51].廈門市蓮花水庫中未檢出SMX[52],大連市碧流河水庫中檢出較低濃度SMX(0~15ng/L)[53],以上兩個水庫均為飲用水源地,其低污染水平與水庫周邊較少的農業活動有關.根據美國食品和藥物管理局報道,SMX在中國的生產規模和使用頻率是世界上最高的,故SMX是需要重點關注的SAs類別[54].與太湖水體中TMP濃度(313ng/L)相比,海河流域(71.80ng/L)的TMP污染程度較輕[55].總體來看,中國湖泊中SAs污染水平可能與人口密度和人類活動強度相關[20,46,56],在人口密度相對東部平原湖區較低的蒙新湖區,青海湖和撫仙湖周圍,SAs的污染水平較低.

2.2 四環素類抗生素(TCs)污染特征

TCs是由鏈霉菌產生的一類廣譜抗生素,在化學結構上屬于多環并四苯羧基酰胺母核的衍生物.TCs主要包括四環素(TCC),土霉素(OTC),金霉素(CTC)和強力霉素(DCC)等.TCs由于成本低廉,使用方便且具有廣譜殺菌性及低毒性,被廣泛應用于農業,畜牧業,在畜牧養殖中常作為抗病藥物,生長促進劑等添加于飼料中.肯尼亞每年有14.6t的抗生素用于畜禽生產, 其中TCs占比為56%[57];TCs也是中國使用最多的藥物添加劑,2003年中國僅OTC產量高達10000t,占世界OTC生產總量的65%[58].在重點關注的38個典型湖泊中,18個湖泊水體中檢出了較高濃度的TCs,其中TCC, OTC, CTC和DCC為主要抗生素類別.湖泊水體中單種TC濃度范圍為n.d.~2633ng/L, 不同湖泊的水體中TCs總污染濃度依次為太湖(2013年,3990ng/L)>洪湖(2015年,1254ng/L)>駱馬湖(2019年,330ng/L)>鄱陽湖(2014~2015年,117ng/L)>巢湖(2012年,61.40ng/L);不同湖區TCs總平均污染濃度依次是東部平原湖區(465ng/L)>蒙新湖區(15.06ng/L)>青海湖(0.48ng/L)>撫仙湖(0.12ng/L)(表2).

表2 湖泊水體中四環素類主要檢出濃度(ng/L)

注:-:無檢測數據;n.d.:低于檢出限.

如圖3所示,在選取的5個典型湖泊中,TCs均無顯著分布差異.Qin等[25]于2013年8月在引江濟太工程引水期采集9個太湖貢湖灣的水樣和5個入湖河流望虞河的水樣,檢測結果顯示TCs濃度范圍為1082~15310ng/L,平均濃度為3920±3479ng/L;相比望虞河,貢湖灣水體抗生素濃度較高,而引水工程對貢湖灣的抗生素污染負荷有一定的削減作用[25].貢湖灣北部灣中檢測出微克級的TCs濃度與該區域城鎮化程度較高有關,而作為人類疾病治療常用抗生素,TCs在貢湖灣北部灣的使用量遠高于貢湖灣南部灣的農村地區[59].

圖3 典型湖泊中四環素類抗生素的濃度比較

箱體上不同字母a,b和c代表p<0.05,即差異顯著

Xu等[20]于2017年1月,4月,7月和10月在太湖流域采集水體樣品,對其中4種TCs進行測定,TCs濃度范圍為0.10~83.80ng/L,遠低于Qin等[25]在2013年的檢測結果.與海洋和江河水體相比,渤海灣TCC濃度(2008年,n.d.~30ng/L)與白洋淀湖(2009年,27.7ng/L)相當[60],黃浦江(2009年,n.d.~114ng/L)介于洪湖與白洋淀湖之間[61].已有研究表明,進入動物體內的TCC大部分不能被機體完全吸收,經過代謝后仍有50%~80%以原藥或者代謝物形式進入環境,這可能可以解釋河湖水體中較高的TCC濃度[62].對于另兩種TCs(OTC和CTC)而言,大部分湖泊中的OTC濃度低于長江(2012年,n.d.~22.5ng/L)和黃浦江(2012年,n.d.~219ng/ L)[63-64];而CTC在太湖和洪湖的污染濃度均較高,分別達到673ng/L和590ng/L,表明CTC可能是太湖流域和洪湖流域主要的TCs污染類型[59,65].城市湖泊水體中抗生素的濃度水平可以在一定程度上反映了湖泊周邊區域抗生素的使用及排放特征[40].例如,位于武漢市區的南湖的DCC濃度高達20.43ng/L,高于另外兩個武漢市區湖泊沙湖(11.30ng/L)和東湖(9.94ng/L)[40],南湖較高的DCC污染水平可能受到周邊環境中醫療廢水,工業污水,科研單位實驗廢水及居民生活污水等多種污染源的影響[66].

2.3 喹諾酮類抗生素(QNs)污染特征

QNs是一類人工合成的廣譜類抗菌藥,是喹諾酮的哌嗪基派生物,在治療人和動物細菌性感染方面具有良好治療效果.QNs的使用量位于抗感染藥物前列,2009 年占據全球抗生素17%的市場份額[67]. WHO(1998年)調查顯示[68],美國,日本,韓國和歐盟等國家和組織的年消費QNs約為120噸;而中國高達1820噸,其中諾氟沙星(NOR),環丙沙星(CIP)和氧氟沙星(OFX)的生產量最大[69].在重點關注的38個中國典型湖泊中,28個湖泊水體中有QNs檢出,其中NOR,CIP,OFX,依諾沙星(ENO),恩諾沙星(ENR)和氟甲喹(FLU)為主要抗生素類別.湖泊水體中單種QN濃度范圍為n.d.~2635ng/L,各湖泊水體中QNs總污染水平依次為白洋淀湖(2018年,3774ng/L)>二龍湖(2017~2018年,840ng/L)>太湖(2017年, 562ng/L)>巢湖(2012年,320ng/L)>月湖(2017年, 267ng/L)>南湖(2017年,105ng/L),不同湖區QNs總平均污染水平依次是二龍湖(840ng/L)>東部平原湖區(613ng/L)>蒙新湖區(59.12ng/L)>撫仙湖(3.40ng/L)>青海湖(0.74ng/L)(表3).

表3 湖泊水體中主要喹諾酮類檢出濃度(ng/L)

續表3

注:-:無檢測數據;n.d.:低于檢出限.

圖4 典型湖泊中喹諾酮類抗生素的濃度比較

箱體上不同字母a,b和c代表p<0.05,即差異顯著

如圖4所示,在選取的5個典型湖泊中,QNs均無顯著分布差異.王瑞杰等[39]在位于寧波市市中心的月湖中檢測到QNs濃度高達267ng/L,可能與月湖周邊人口密集區生活污水大量排放有關.相比太湖貢湖灣北部灣(331ng/L),南部灣檢測的OFX濃度較高(474ng/L),這與南部灣農村人口居多,牲畜養殖業發達,且OFX作為人畜共用抗生素在該區域大量使用有關[59].Zhang等[33]發現白洋淀湖中存在較高的QNs生態風險,其中FLU(2635ng/L)檢出濃度最高,這與當地的畜禽養殖業中FLU的廣泛應用有關.盡管FLU在白洋淀等少數幾個湖泊中高濃度檢出,但相比其他QNs類型,FLU在38個典型湖泊中的檢出頻率較低,可能與FLU在水環境中易被光解和生物降解去除有關[21].對于另外兩種QNs(CIP和NOR),相比歐洲河流水體中的檢出濃度(CIP:513ng/L; NOR:33ng/L),我國東北平原與山地湖區的二龍湖(四平市飲用水源地)水體中CIP和NOR濃度較高,分別達到645ng/L和179ng/L[70],暗示QNs類抗生素在該區域可能存在潛在生態風險[46].

2.4 大環內酯類抗生素(MLs)污染特征

MLs是指鏈霉菌產生的廣譜抗生素,具有基本的內酯環結構,對革蘭陽性菌和革蘭陰性菌均有抑制作用,尤其能有效殺滅支原體,衣原體,軍團菌,螺旋體和立克次體,對治療呼吸道感染發揮重要作用[86],主要用于人類疾病治療[39].在38個典型湖泊中,MLs在19個湖泊水體中檢出,其中紅霉素(ETM),羅紅霉素(RTM),阿奇霉素(ATM)和泰樂菌素(TYL)是主要的抗生素類別.相比SAs, TCs和QNs, MLs在湖泊水體中的檢出濃度最低,這可能與其高疏水性,強親脂性以及沉積物對MLs的強吸附性有關[71].湖泊水體中單種ML濃度范圍為n.d.~566ng/L,各湖泊水體中MLs總污染水平依次為駱馬湖(2019年,644ng/L)>淀山湖(2018年,564ng/L)>太湖(2017年,432ng/L)>月湖(2017年,227ng/L)>東湖(2017年,195ng/L)>巢湖(2012年,136ng/L),不同湖區MLs總平均污染水平依次是東部平原湖區(197ng/L)>蒙新湖區(5.28ng/L)>撫仙湖(2.25ng/L)>青海湖(0.61ng/L)(表4).

如圖5所示,在選取的5個典型湖泊中,MLs在洞庭湖與鄱陽湖之間存在顯著分布差異.楊宇軒等[38]對駱馬湖及其入湖河流表層水體中的MLs的調查結果顯示,湖區RTM的最高濃度高達566ng/L.同時在太湖水體中檢測出了較高濃度的RTM (60.2ng/L),與蓮花水庫濃度相當(72.58ng/L),而其余湖泊的污染水平與河流水體一致,比如海河(2008年,n.d.~12ng/L),松花江(2016年,0.2~11.5ng/L)和位于韓國的漢江(2005年,3~14ng/L)[72-74].在淀山湖中檢出了最高濃度的ETM(564ng/L),可能與淀山湖周邊存在的污染源如醫院等有關[23].ETM在長江中下游三大淡水湖泊(太湖,洞庭湖和巢湖)中的濃度分別為0.07~1139ng/L,0.26~182ng/L和1.57~136ng/L,明顯高于長江水體(8~24ng/L)[23,75].而對位于云貴高原湖區的撫仙湖的研究表明,靠近居民區的采樣點的抗生素濃度最高,其次為采礦區,農業區和游客區,與青海湖不同的是,撫仙湖流入河流中的MLs平均濃度是湖泊中MLs的5.6倍,這可能與水體稀釋作用和抗生素降解有關[44].

表4 湖泊水體中主要大環內酯類檢出濃度(ng/L)

注:-:無檢測數據;n.d.:低于檢出限.

圖5 典型湖泊中大環內酯類抗生素的濃度比較

箱體上不同字母a,b和c代表p<0.05,即差異顯著

3 典型湖泊沉積物中抗生素污染特征

相比湖泊水體中抗生素污染水平,關于湖泊沉積物中抗生素的報道相對較少,已有文獻主要關注東部平原湖區和蒙新湖區.總體來說,湖泊沉積物中TCs和QNs的濃度水平明顯高于水體,檢出濃度均達微克級,這可能與沉積物顆粒對QNs和TCs的強吸附性有關,其中TCs可利用陽離子吸附架橋作用對沉積物中的有機質有較高親和力[76-77].QNs與陽離子具有很強的螯合作用,延緩了它們在沉積物中的降解過程[36],進一步導致 QNs 在沉積物中的殘留濃度較高.在土壤/沉積物環境中,SAs及其代謝產物不易發生降解,會長期存在并積累于沉積物中[78],這可能是SAs在沉積物環境中的檢出濃度較高的原因.在重點關注的38個典型湖泊中,9個湖泊沉積物中檢出了一定濃度的抗生素,其中ETM, OFX, TCC和SDZ為主要抗生素類別.湖泊沉積物中單種抗生素濃度范圍為n.d.~2663ng/g,各湖泊沉積物中抗生素的總污染水平依次為(2015年,3888ng/g)>白洋淀湖(2018年,1623ng/g)>博斯騰湖(2012年,391ng/g)>太湖(2017年,272ng/g)>南四湖(2017年,22.43ng/g),不同湖區沉積物中抗生素總平均污染水平高低順序依次是東部平原湖區(901ng/g)>蒙新湖區(391ng/g)(表5).

表5 湖泊沉積物中主要檢出抗生素及濃度(ng/g)

注:-:無檢測數據;n.d.:低于檢出限.

Okugbe等[80]對比了城鄉湖泊(太湖,玄武湖,五龍潭)沉積物中7種抗生素的垂直分布規律,結果表明太湖抗生素總濃度高于玄武湖和五龍潭,表層沉積物抗生素濃度基本高于深層,且抗生素濃度一般隨沉積物深度的增加而降低.可能原因為在持續的點源和面源污染下,湖泊附近醫療廢水和生活污水從地表徑流再到湖泊,使得湖泊表層沉積物匯集了大量抗生素,同時在湖泊沉積物內抗生素的移動或再分配率較低[81].而Li等[45]對青海湖及其入湖河流沉積物樣本中的83種目標抗生素等微污染物進行定量分析,包括抗生素的降解產物;研究表明由于紅霉素的降解產物AETM的Kd值最大,即具有高吸附性和強疏水性,使其在沉積物中占主導地位[45].

洪湖沉積物中SAs總濃度高達706ng/g,可能與洪湖廣泛的水產養殖面積相關.中國珠江(n.d.~ 3.24ng/g)和美國Choptank River(n.d.~0.82ng/g)中SAs濃度低于10ng/g,低于中國湖泊沉積物中SAs濃度[82,83].在白洋淀湖的沉積物中檢測出了較高濃度的OFX(260ng/g),明顯高于美國明尼蘇達州的湖泊[84](2014年,66.10ng/g)和美國的密歇根湖[85](2009~2010年,7.7ng/g)沉積物中的OFX濃度.據Li等報道[86],新疆畜牧業發達,而大部分農場又遠離城市無基本污水處理設施,導致大量殘余抗生素的廢水排入自然環境,進一步富集至湖泊沉積物中.在屬于蒙新湖區的博斯騰湖表層沉積物中發現QNs類占主導地位,尤其是CIP(213ng/g);同時靠近城區和河口的沉積物采樣點中抗生素污染濃度普遍偏高,與水體結果一致[42].Zhang等[87]發現QNs的高污染水平可能由于其為某些抗生素分解的副產物,同時抗生素的降解產物可能比母體抗生素毒性更大,加劇抗生素污染的嚴重性[88-89].在洪湖沉積物中檢出了微克級濃度的TCC(2663ng/g),遠高于三峽庫區長壽湖中TCC濃度(12.81ng/g)[90];同樣也在洪湖沉積物中檢出了較高濃度OTC和CTC,分別為68.45和438ng/g,進一步表明人類活動對洪湖沉積物生態環境造成了影響[56].而河北石家莊汪洋河沉積物中TCC濃度(4.23~16799ng/g)遠高于中國湖泊[91],可能由于該河流為河北高新技術產業開發區污水處理系統出水的唯一接收水體.MLs在湖泊沉積物中的低檢出濃度可能與該藥物主要用于人類疾病治療有關[10].其中ETM在湖泊沉積物中的最高濃度為27.7ng/g(太湖),低于海河沉積物(67.7ng/g)和黃河沉積物(49.8ng/g)[73].

4 典型湖泊抗生素污染的季節性差異

在同一湖泊中抗生素的濃度往往呈現季節差異,以東部平原湖區的典型湖泊太湖為例.對太湖抗生素濃度的實地調查已有多篇報道,但其不同季節的污染水平差異或相似性仍有待闡明.Xu等[20]對太湖流域4個季節的四大類抗生素時空分布特征進行了調查研究,結果表明太湖流域季節差異性明顯,春,夏,冬季的污染量顯著高于秋季.抗生素在不同季節的分布差異可能是由于非生物因素導致的,例如流體動力條件,風向和風速[92].且其一般是多個外部驅動因素的協同作用導致,例如降雨既可能加劇污染——大量雨水驅動地表徑流,而這些徑流可能攜帶抗生素進入接收河流或湖泊,又可能是雨水匯入河湖,起到稀釋水體抗生素濃度的作用[92].抗生素在夏季的生物降解和光解作用比其他季節更強烈;但在夏季高溫時病原微生物更活躍,為了促進畜禽生長或防治畜禽感染疾病,畜禽和水產養殖業中抗生素的使用量可能增加[93].白洋淀旱季(4月)和雨季(8月)QNs含量的研究結果與上述太湖的研究結果相反,旱季抗生素濃度整體高于雨季[94],故降雨對抗生素起到了稀釋作用,這與對鄱陽湖,二龍湖的研究結果一致[46,95].而對固城湖地表水中鄰近河川和蟹塘的水體抗生素進行季節性檢測發現,固城湖水體抗生素濃度存在明顯的季節性變化,且夏季抗生素濃度最高[26].位于蒙新湖區的烏倫古湖抗生素分布主要受周邊河流水文和氣候條件變化影響,導致抗生素在枯水期含量普遍高于豐水期[41].鑒于湖泊沉積物受溫度和降雨的影響程度相對湖泊水體偏低且抗生素在沉積物中遷移性較差[96],沉積物中抗生素季節性差異較水體并不明顯,還需考慮湖泊底泥擾動時抗生素釋放至上覆水中的復雜情況.

5 結語

基于文獻資料數據,系統分析了跨越14個省份與直轄市的中國不同湖區共38個典型湖泊中的四大類抗生素的污染特征.中國湖泊中抗生素污染較為普遍;受人類活動干擾大的湖泊污染程度較重,典型代表為太湖,洪湖,二龍湖及博斯騰湖,其水體和沉積物中TCs和SAs均被高濃度檢出,需重點關注;大部分湖泊水體旱季抗生素污染水平高于雨季,靠近污染源地區的污染水平較高,表層沉積物抗生素濃度基本高于深層沉積物.然而,中國湖泊抗生素研究仍存在以下不足:湖泊水體及沉積物中抗生素組分復雜,已有研究大多選擇某幾種抗生素進行探討,缺乏對抗生素全貌的研究,且監測手段缺乏時效性.已有研究大部分只考慮湖泊水體或沉積物,并未同時檢測入,出湖河流的污染情況,對于不同湖泊不同時間的抗生素污染情況難以進行對比.目前研究區域局限于東部平原湖區,其他四大湖區的研究數據較為薄弱.目前研究主要針對湖泊水體和沉積物中的抗生素污染情況,缺乏對湖泊中生物體內抗生素的賦存和影響研究.

針對以上不足,未來研究應從以下幾方面展開:加大自然環境中抗生素監測技術的研發投入力度,以期可實時監測湖泊中抗生素濃度動態變化.加大對受人類干擾影響較小地區湖泊的關注力度,確定自然湖泊中抗生素背景濃度值,以期界定嚴重污染湖泊.為湖泊環境介質制定抗生素的最大閾值,明確抗生素等新型污染物的環境標準.針對湖泊中生物體內抗生素濃度含量開展研究,了解抗生素的水生生物毒理特性.

[1] Andersson D I, Hughes D. Microbiological effects of sublethal levels of antibiotics [J]. Nature Reviews Microbiology, 2014,12(7):465-478.

[2] Ben Y J, Fu C X, Hu M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review [J]. Environmental Research, 2019,169(2): 483-493.

[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental science & Technology, 2015,49(11):6772-6782.

[4] 孫金昭.城市生活垃圾填埋場中抗生素殘留濃度征及抗性基因相關性研究 [D]. 上海:華東師范大學, 2017.

Sun J Z. Characteristics of antibiotics contents in municipal solid waste landfills and correlation with antibiotic resistance genes [D]. Shanghai: East China Normal University, 2017.

[5] Wang J L, Zhuan R, Chu L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview [J]. Science of the Total Environment, 2019,646(1):1385-1397.

[6] Hartmann A, Alder A C, Koller T, et al. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater [J]. Environmental Toxicology & Chemistry, 2010,17(3):377-382.

[7] 徐 艷,張 遠,郭昌勝,等.石家莊汪洋溝地區抗生素,抗性細菌和抗性基因污染特征 [J]. 農業環境科學學報, 2014,33(6):1174-1182.

Xu Y, Zhang Y, Guo C S, et al. Pollution characteristics of antibiotics and antibiotic-resistant bacteria and genes in Wangyanggou River, Shijiazhuang, China [J]. Journal of Agro-Environment Science, 2014, 33(6):1174-1182.

[8] Jacobsen P L, Berglind L. Persistence of oxytetracycline in sediments from fish farms [J]. Aquaculture, 1988,70(4):365-370.

[9] Samuelsen O B. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm [J]. Aquaculture, 1989,83(1/2):7-16.

[10] 劉 潔.三峽庫區典型支流沉積物中抗生素及抗性基因多樣性研究 [D]. 重慶:重慶大學, 2019.

Liu J. Study on diversity of antibiotics and resistance genes in typical tributary sediments from the Three Gorges Reservoir [D]. Chongqing: Chongqing University, 2019.

[11] Murata A, Takada H, Mutoh K, et al. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers [J]. Science of the Total Environment, 2011,409(24):5305-5312.

[12] Xu W H, Yan W, Li X D, et al. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks [J]. Environmental Pollution, 2013, 182(6):402-407.

[13] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research, 2009,81(3):248.

[14] Xu J, Zhang Y, Zhou C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014,497-498: 267-273.

[15] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015,122:154-161.

[16] Zhang R J, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge [J]. Ecotoxicology and Environmental Safety, 2012,80(2):208-215.

[17] Zhang R J, Tang J H, Li J, et al. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks [J]. Environmental Pollution, 2013,174(3):71-77.

[18] Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science & Health Part B, 2011,46(3): 272-280.

[19] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011,45(5): 1827-1833.

[20] Xu Z A, Li T, Bi J, et al. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China [J]. Science of the Total Environment, 2018,643:12-20.

[21] Yang J F, Ying G G, Zhao J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS [J]. Science of the Total Environment, 2010,408(16): 3424-3432.

[22] Kim K R, Owens G, Kwon S I, et al. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment [J]. Water Air and Soil Pollution, 2011,214(1-4):163-174.

[23] Li L, Liu D, Zhang Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin [J]. Journal of Environmental Management, 2019,249:109396.

[24] Yan Z H, Yang H H, Dong H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion [J]. Environmental Pollution, 2018,239:223-232.

[25] Qin Y W, Wen Q, Ma Y Q, et al. Antibiotics pollution in Gonghu Bay in the period of water diversion from Yangtze River to Taihu Lake [J]. Environmental Earth Sciences, 2018,77(11):419.1-419.11.

[26] Wang W X, Zhou L J, Gu X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research, 2018,25(23):22619-22628.

[27] 唐 俊,陳海燕,史陶中,等.巢湖喹諾酮及四環素類藥物污染現狀及來源分析 [J]. 安徽農業大學學報, 2013,40(6):1043-1048.

Tang J, Chen H Y, Shi T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in the aquatic environment of Chaohu Lake [J]. Journal of Anhui Agricultural University, 2013,40(6):1043-1048.

[28] Han M Z, Dsouza M, Zhou C Y, et al. Agricultural risk factors influence microbial ecology in Honghu Lake [J]. Genomics Proteomics & Bioinformatics, 2019,17(1):76-90.

[29] Wang Y Q, Liu Y, Lu S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research, 2019,26(28):28796-28807.

[30] Zhou L J, Li J, Zhang Y, et al. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China [J]. Ecotoxicology and Environmental Safety, 2019,183:109511.

[31] 劉曉暉,盧少勇.大通湖表層水體中抗生素賦存特征與風險 [J]. 中國環境科學, 2018,38(1):320-329.

Liu X H, Lu S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China [J]. China Environmental Science, 2018,38(1):320-329.

[32] Ding H J, Wu Y X, Zhang W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China [J]. Chemosphere, 2017,184:137-147.

[33] Zhang L L, Shen L N, Qin S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no- effect concentrations (PNECs) and ecological risks by three methods [J]. Environmental Pollution, 2020,256(1):113458.1-113458.9.

[34] Zhang P W, Zhou H D, Li K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in North China [J]. Environmental Geochemistry and Health, 2018,40(4):1525-1539.

[35] Cheng D M, Liu X H, Wang L, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China [J]. Science of the Total Environment, 2014,476:266-275.

[36] Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012,89(11):1307-1315.

[37] Zhang G D, Liu X H, Lu S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020,242(12):52-69.

[38] 楊宇軒.駱馬湖表層水典型抗生素賦存特征及沉積物吸附行為研究 [D]. 徐州:中國礦業大學, 2020.

Yang Y X. Occurrence characteristics of typical antibiotics in surface water of Luoma Lake and adsorption behavior on sediments [D]. Xuzhou: China University of Mining and Technology, 2020.

[39] 王瑞杰,裘錢玲琳,李國祥,等.寧波月湖水體中抗生素分布與生態風險評價 [J]. 湖泊科學, 2018,30(6):1616-1624.

Wang R J, QiuQian L L, Li G X, et al. Distribution characteristics and ecological risk assessment of selected antibiotics in Moon Lake, Ningbo City [J]. Journal of Lake Sciences, 2018,30(6):1616-1624.

[40] 肖鑫鑫,吳亦瀟,丁惠君,等.武漢城市湖泊抗生素及抗性基因的污染特征研究 [J]. 環境科學與技術, 2019,42(3):9-16.

Xiao X X, Wu Y X, Ding H J, et al. Pollution characteristics of antibiotics and antibiotic resistance genesin urban lakes of Wuhan [J]. Environmental Science & Technology, 2019,42(3):9-16.

[41] 雷曉寧.新疆典型湖泊中抗生素的污染狀況與分布特征 [D]. 石河子:石河子大學, 2014.

Lei X N. Distribution and pollution levels of antibiotics from typical lakes in Xinjiang [D]. Shihezi: Shihezi University, 2014.

[42] Lei X N, Lu J J, Liu Z L, et al. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang [J]. Environmental Science and Pollution Research, 2015,22(3):1670- 1678.

[43] 王倩倩.新疆阿拉山口及周邊水環境中多種抗生素的污染水平研究 [D]. 石河子:石河子大學, 2016.

Wang Q Q. Pollution levels of antibiotics from aquatic environment in Alashankou Region of Xinjiang and surrounding area [D]. Shihezi: Shihezi University, 2016.

[44] Zhao B, Xu J M, Zhang G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020,262:127741.

[45] Li S, Kuang Y Z, Hu J R, et al. Enrichment of antibiotics in an inland lake water [J]. Environmental Research, 2020,190:110029.

[46] Li S J, Ju H Y, Zhang J Q, et al. Occurrence and distribution of selected antibiotics in the surface waters and ecological risk assessment based on the theory of natural disaster [J]. Environmental Science and Pollution Research, 2019,26(27):28384-28400.

[47] 王 娜.環境中磺胺類抗生素及其抗性基因的污染特征及風險研究 [D]. 南京:南京大學, 2014.

Wang N. Pollution characteristics and risk of sulfonamides antibiotics and their resistance genes in the environment [D]. Nanjing: Nanjing University, 2014.

[48] Li S J, Ju H Y, et al. Terrestrial humic-like fluorescence peak of chromophoric dissolved organic matter as a new potential indicator tracing the antibiotics in typical polluted watershed [J]. Journal of Environmental Management, 2018,228(12.15):65-76.

[49] Zhang G D, Lu S Y, Wang Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China [J]. Environmental Pollution, 2020,257:113365.

[50] B?ger B, Surek M, Vilhena R d O, et al. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil [J]. Journal of Hazardous Materials, 2021,402:123448.

[51] Ngumba E, Gachanja A, Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya [J]. Science of the Total Environment, 2016,539:206-213.

[52] 廖 杰,魏曉琴,肖燕琴,等.蓮花水庫水體中抗生素污染特征及生態風險評價 [J]. 環境科學, 2020,41(9):205-211.

Liao J, Wei X Q, Xiao Y Q, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua Reservoir [J]. Environmental Science, 2020,41(9):205-211.

[53] 董莞莞,何 欣,鄭洪波,等.大連碧流河水庫及河流典型抗生素污染和分布特征研究 [J]. 大連理工大學學報, 2020,60(2):119-127.

Dong W W, He X, Zhen H B, et al. Research on occurrences and distribution characteristics of typical antibiotics in Biliuhe Reservoir and its inflow rivers in Dalian [J]. Journal of Dalian University of Technology, 2020,60(2):119-127.

[54] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627:1195-1208.

[55] Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130:104919.

[56] Wang Z, Han M Z, Li E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality [J]. Journal of Hazardous Materials, 2020,393:122426.

[57] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006,65(5):725-759.

[58] 安清聰,張 曦,陳克嶙.動物組織中四環素類抗生素殘留的ELISA檢測研究-土霉素抗體的制備 [J]. 畜牧與獸醫, 2004,36(9):8-10.

An Q C, Zhang X, Chen K L. Detection of tetracyclines residue in animal tissues by ELISA: Preparation of anti-OTC antibodies [J]. Animal Husbandry & Veterinary Medicine, 2004,36(9):8-10.

[59] 武旭躍,鄒 華,朱 榮,等.太湖貢湖灣水域抗生素污染特征分析與生態風險評價 [J]. 環境科學, 2016,37(12):4596-4604.

Wu Y H, Zou H, Zhu R, et al. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu Bay, Taihu Lake [J]. Environmental Science, 2016,37(12):4596-4604.

[60] Zou S C, Xu W H, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011,159(10): 2913-2920.

[61] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011,82(6):822-828.

[62] 羅方園,潘根興,李戀卿,等.洪澤湖沉積物中四環素土霉素及相關抗性基因的分布特征及潛在風險分析 [J]. 農業環境科學學報, 2017, 36(2):369-375.

Luo F Y, Pan G X, Li L Q, et al. The distribution characteristics and potential risk of tetracycline, oxytetracycline and their corresponding genes pollution in sediment ofHongze Lake [J]. Journal of Agro- Environment Science, 2017,36(2):369-375.

[63] Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013,175(4):22-29.

[64] Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China [J]. Chemosphere, 2014,95(6):604-612.

[65] Tong L, Qin L T, Guan C, et al. Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China [J]. Environmental Science and Pollution Research, 2020,27(25):31995-32005.

[66] Yang Y Y, Xu C, Cao X H, et al. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact [J]. Ecotoxicology, 2017, 26(6):831-840.

[67] Hamad B. The antibiotics market [J]. Nature Reviews Drug Discovery, 2010,9(9):675-676.

[68] Units T. Use of quinolones in food animals and potential impact on human health [A]. 1998.

[69] Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment [J]. Reviews of Environmental Contamination and Toxicology, 2007, 191:131-162.

[70] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010,179(1-3):1042-1048.

[71] Yue J, Cong X, Wang X Y, et al. Occurrence, seasonal variation and risk assessment of antibiotics in Qingcaosha Reservoir [J]. Water, 2018,10(2):115.

[72] Choi K, Kim Y, Park J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea [J]. Science of the Total Environment, 2008, 405(1-3):120-128.

[73] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China [J]. Environmental Pollution, 2011,159(7):1877-1885.

[74] Wang W H, Wang H, Zhang W F, et al. Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China [J]. Environmental Science and Pollution Research, 2017,24(23):1-11.

[75] Chang X, Meyer M T, Liu X, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorges Reservoir in China [J]. Environmental Pollution, 2010,158(5):1444- 1450.

[76] Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays [J]. Environmental Science & Technology, 2004,38(2):476-483.

[77] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008,151(2/3):833-839.

[78] 汪仙仙,張洪昌,沈根祥,等.典型磺胺類抗生素在稻田土中的縱向遷移 [J]. 環境化學, 2018,37(8):71-79.

Wang X X, Zhang H C, Shen G X, et al. Vertical migration of typical sulfonamide antibiotics in paddy soil [J]. Environmental Chemistry, 2018,37(8):71-79.

[79] Xie Z X, Lu G H, Yan Z H, et al. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake [J]. Environmental Pollution, 2017,222:356-366.

[80] Ohore O E, Addo F G, Han N N, et al. Profiles of ARGs and their relationships with antibiotics, metals and environmental parameters in vertical sediment layers of three lakes in China [J]. Journal of Environmental Management, 2020,255(2):109583.1-109583.12.

[81] Zhang S H, Pang S, Wang P F, et al. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event [J]. Environmental Science and Pollution Research, 2016,23(10):9984-9992.

[82] Arikan O A, Rice C, Codling E. Occurrence of antibiotics and hormones in a major agricultural watershed [J]. Desalination, 2008, 226(1-3):121-133.

[83] Liang X M, Chen B W, Nie X P, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China [J]. Chemosphere, 2013,92(11):1410-1416.

[84] Kerrigan J F, Sandberg K D, Engstrom D R, et al. Sedimentary record of antibiotic accumulation in Minnesota Lakes [J]. Science of the Total Environment, 2018,621:970-979.

[85] Blair B D, Crago J P, Hedman C J, et al. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern [J]. Chemosphere, 2013,93(9):2116-2123.

[86] 李 超.新疆地區典型污染源抗生素抗性基因的污染分布的研究分析 [D]. 石河子:石河子大學, 2016.

Li C. Distribution and contamination levels of ARGs from typical pollution sources in Xinjiang [D]. Shihezi: Shihezi University, 2016.

[87] Zhang S H, Gu J, Wang C, et al. Characterization of antibiotics and antibiotic resistance genes on an ecological farm system [J]. Journal of Chemistry, 2015,2015:1-8.

[88] Yan M T, Xu C, Huang Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2018, 631-632:840-848.

[89] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012,42(1):1-9.

[90] Lu L H, Liu J, Li Z, et al. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the Three Gorges Reservoir area, China [J]. Ecological Indicators, 2020,113:106275.

[91] Jiang Y H, Li M X, Guo C S, et al. Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China [J]. Chemosphere, 2014,112(10):267-274.

[92] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010,158(9):2992-2998.

[93] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010,44(19):7220-7225.

[94] Zhang L L, Shen L N, Qin S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no- effect concentrations (PNECs) and ecological risks by three methods [J]. Environmental Pollution, 2020,256(1):113458.1-113458.9.

[95] Liang X M, Guan F L, Chen B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China [J]. Ecotoxicology and Environmental Safety, 2020,196(6):110543.

[96] 鐘振興.磺胺抗生素在湖泊沉積物中的吸附和降解行為研究[D].重慶: 西南大學, 2012.

Zhong Z X. Adsorption and degradation of sulfonamides in lake sediments [D]. Chongqing: Southwest University, 2012.

Pollution characteristics of four-type antibiotics in typical lakes in China.

ZHANG Jing-jing1,2, CHEN Juan1,2*, WANG Pei-fang1,2, WANG Chao1,2, GAO Han1,2, HU Yu1,2

(1.Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China;2.College of Environment, Hohai University, Nanjing 210098, China)., 2021,41(9):4271~4283

Based on existing literature data, we analyzed the pollution characteristics of four-type antibiotics used commonly, including tetracyclines, sulfonamides, quinolones and macrolides, in 38 typical lakes, which are distributed in eastern plain lake region (31), Mengxin lake district (4), Erlong Lake, Qinghai Lake and Fuxian Lake. The results showed that the four-type antibiotics were ubiquitous in waterbody and sediments of these lakes, and the pollution concentrations decreased as follows: SAs (2147ng/L)> quinolones (QNs, 1458ng/L)> tetracyclines (TCs, 481 ng/L)> macrolides (MLs, 205 ng/L). The antibiotics in sediments exhibited vertical difference, with higher pollution concentration in surface sediment than that in deep sediments. The antibiotics concentrations varied among different lake regions, and in the eastern plain lake region showed higher contamination level. Compared with the inflow rivers, lakes, such as the Gonghu Bay in Taihu Lake and Qinghai Lake, generally showed relatively higher contamination levels, suggesting that lakes serve as a reservoir of antibiotics. Seasonal comparison in pollution levels in waterbody of lakes showed that the antibiotic concentrations in pring, summer and winter was significantly higher than that in the autumn. For example, Poyang Lake, Baiyangdian Lake and Erlong Lake’ antibiotic pollution was higher in dry season (April) than in rainy season (August). However, antibiotics concentrations in lake sediments were comparable between different seasons, probably resulting from the migration of antibiotics in sediments.

antibiotic;lake;pollution level;lake region

X524

A

1000-6923(2021)09-4271-13

張晶晶(1997-),女,湖南永州人,碩士研究生,主要研究方向為環境微生物生態及抗生素抗性.發表論文1篇.

2021-02-11

國家重點研發計劃項目(2018YFC0407604),國家自然科學基金項目(52022028,51779077)聯合資助

* 責任作者, 教授, chenjuanmn@hhu.edu.cn

猜你喜歡
污染
河流被污染了嗎?
什么是污染?
什么是污染?
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
堅決打好污染防治攻堅戰
可以喝的塑料:污染解決之道?
飲用水污染 誰之過?
食品界(2016年4期)2016-02-27 07:36:15
對抗塵污染,遠離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
P265GH低合金鋼在模擬污染大氣環境中的腐蝕行為
污染防治
江蘇年鑒(2014年0期)2014-03-11 17:09:46
主站蜘蛛池模板: 三上悠亚一区二区| 亚洲最大福利视频网| 精品久久香蕉国产线看观看gif| 欧美成人午夜影院| 亚洲欧美成人在线视频| 国产在线无码av完整版在线观看| 国产免费看久久久| 国产午夜无码片在线观看网站| 成·人免费午夜无码视频在线观看| 538国产在线| 人妻熟妇日韩AV在线播放| 国产区成人精品视频| 免费观看精品视频999| 亚洲日韩精品无码专区| 亚洲一级无毛片无码在线免费视频| 成人国产一区二区三区| 国产熟女一级毛片| 国产免费久久精品44| 国产剧情一区二区| 亚洲精品国产自在现线最新| 亚洲国产成人超福利久久精品| 中国毛片网| 亚洲av无码牛牛影视在线二区| 精品国产美女福到在线直播| 久久久波多野结衣av一区二区| 福利一区在线| 国产色伊人| 国产成人无码久久久久毛片| 青青草原国产av福利网站| 无码AV高清毛片中国一级毛片| 成年人国产视频| 国产免费羞羞视频| 亚洲v日韩v欧美在线观看| 国产乱人伦精品一区二区| 毛片手机在线看| 国产三级成人| 亚洲欧美成人在线视频| 六月婷婷激情综合| 亚洲天堂区| 免费Aⅴ片在线观看蜜芽Tⅴ| 午夜人性色福利无码视频在线观看| 丁香婷婷激情综合激情| 粗大猛烈进出高潮视频无码| 国产理论最新国产精品视频| 人人澡人人爽欧美一区| 97在线免费| 亚洲天堂精品在线观看| 国产在线八区| 91久久精品国产| 亚洲资源在线视频| 久久99精品国产麻豆宅宅| 国产呦视频免费视频在线观看 | 天天摸夜夜操| 久久综合丝袜长腿丝袜| 亚洲人成色77777在线观看| 亚洲色无码专线精品观看| 特级毛片免费视频| 国产在线小视频| 一级看片免费视频| 欧美中文字幕无线码视频| 亚洲熟女中文字幕男人总站| 白浆视频在线观看| 欧美激情第一欧美在线| 狠狠综合久久久久综| 国产精品蜜芽在线观看| 精品无码一区二区三区电影| 激情乱人伦| 国产男人的天堂| 自拍偷拍欧美日韩| www亚洲精品| 国产精品女熟高潮视频| AV片亚洲国产男人的天堂| 精品视频第一页| 亚洲Va中文字幕久久一区| 欧美精品亚洲精品日韩专| 亚洲国产中文精品va在线播放| 久久夜夜视频| 久久精品国产在热久久2019| 久久久久亚洲av成人网人人软件| 亚洲天堂视频网| 亚洲精品动漫| 国产精品久久久久无码网站|