999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

3D聚氨酯/聚乙烯醇縮丁醛納米纖維海綿的制備

2021-10-23 01:05:00TavongaTrevorChadyagondo陳強施靜雅李妮
絲綢 2021年10期
關鍵詞:結構

Tavonga Trevor Chadyagondo 陳強 施靜雅 李妮

摘要: 文章制備了具有海綿結構的聚氨酯(PU)/聚乙烯醇縮丁醛(PVB)三維(3D)納米纖維多孔結構。通過SEM、XRD和FTIR對其形貌和結構進行表征,并通過拉伸和壓縮實驗對其力學性能進行研究。SEM結果顯示,不同PU和PVB質量比的三維結構在纖維形態和纖維間交聯方面存在差異。XRD和FTIR結果證明了3D納米纖維海綿中PU和PVB聚合物分子的存在,并明確了PU分子和PVB分子間存在交聯。實驗表明,當PU和PVB質量比為7︰3時,3D納米纖維海綿中纖維形貌好,結構穩定,斷裂強力為2.2 MPa,斷裂伸長為175.5%。該多孔纖維輕質海綿具有優異的壓縮回復性能,可應用于不同的領域。

關鍵詞:

聚氨酯;聚乙烯醇縮丁醛;三維結構;多孔海綿;力學性能

中圖分類號: TS102.5

文獻標志碼: A

文章編號: 1001-7003(2021)10-0036-08

引用頁碼: 101107

DOI: 10.3969/j.issn.1001-7003.2021.10.007(篇序)

Preparation of 3D polyurethane/polyvinylbutyral nanofiber sponge

CHADYAGONDO Tavonga Trevor, CHEN Qiang, SHI Jingya, LI Ni

(College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract:

In this study, a polyurethane(PU) and polyvinyl butyral(PVB) three-dimensional(3D) nanofiber porous sponge structure was prepared. Its morphology and structure were characterized by SEM, XRD and FTIR, and the mechanical properties were investigated by tensile and compressing tests. SEM results revealed that for the three-dimensional structure of different PU︰PVB ratios, there existed differences in fibre morphology and the interfibrous crosslinking. As proved by XRD and FTIR results, PU and PVB polymeric molecules existed in the 3D nanofiber sponge, and it was clarified that there exited crosslinking between PU molecules and PVB molecules. Experiments showed that when the mass ratio of PU and PVB was 7︰3, the fiber morphology of the 3D nanofiber sponge was good, the structure was stable, a breaking strength of 2.2 MPa, and a breaking elongation of 175.5%. The porous fiber lightweight sponge has excellent compression and resilience performance, and it can be applied in different fields.

Key words:

polyurethane; polyvinyl butyral; three-dimensional structure; porous sponge; mechanical property

收稿日期: 2021-04-06;

修回日期: 2021-09-14

基金項目:

作者簡介: Tavonga Trevor Chadyagondo(1990),男,碩士研究生,研究方向為3D納米纖維多孔結構。通信作者:李妮,副教授,lini@zstu.edu.cn。

Electrospinning has attracted extensive attention due to its production of nanofibrous mats[1] with controllable and feasible mechanical[2] or biological properties[3-4] and its ability to change the combination of polymers to fabricate specific fibers[5]. Meanwhile, in view of some advantages of electrospun nanofibrous mats, such as large surface-to-volume ratios[6], the diversity of available materials, and the ease of surface modifications[7-8], they have been used as the substrates for various purposes[4-6].

A sponge-like three-dimensional network structure, characterized by reversible compressibility[9], high porosity[9-10], low density, flexibility and other attractive properties, shows promising application prospect as filters[9-11], thermal insulation materials and drug delivery[3,4,9,12-13].Several papers have reported the practical approaches for producing lightweight sponge polymeric materials[14-16]. Ding Bin reported the construction of mechanically robustfibrous networks from Polyacrylonitrile(PAN) and SiO2unbonded aerogels by heating to form bonded 3Dfibrous networks, which also disclosed problems of heat shrinkage and the relaxation of orientedmolecular chains[17]. Other information explained the shortcomings of the brittleness of traditionalcolloidal aerogels[18]. Conclusions were drawn based on inherentfragility of aerogel monoliths, limiting their applications in which they were not affected by any load[19]. The mesoporoussilica structure of an aerogel was cross-linked by the reaction of di-isocyanates withsilanols on the surfaceofwet gels before supercriticaldrying[20], thereby developing a silica sponge material.

Polyurethane(PU) is a thermoplastic elastomer withexcellent performance of wear resistance,flexibility, hydrolyticstability, stretchability, and workability at low cost[21-24]. In recentyears, PU has been studied in some literaturesin relation to its production for electrospun waterproof andbreathable functions[8,22,25-26]. Polyvinyl butyral(PVB) has been often adopted as the crosslinker/binder because of itswell-knowngood adhesion, film-forming and excellent flexibility, as well as outstanding UV resistance[27-28].

In this paper, electrospinning and freeze-drying of dispersions of short electrospun fibers were employed to fabricate ultra-light PU/PVB sponges. The morphology and structure were examined, the tensile and compression properties of PU/PVB sponges were evaluated systematically in this study, aiming to prepare a kind of 3D nanofiber sponge with stable structure.

1 實 驗

1 Experiment

1.1 材 料

1.1 Materials

PU(Mw=120,000 g/mol) and PVB(Mw=40 000-70 000 g/mol) were purchased from Shanghai Macklin Biochemical Co., Ltd and used without further purification. Dimethylformamide(DMF) and ethanol were bought from Hangzhou Gaojing Fine Chemical Industry Co., Ltd.

1.2 PU/PVB納米纖維膜

1.2 Electrospinning of PU/PVB nanofiber mat

Several PU/PVB blends with mass ratiosranging from 8︰2, 7︰3, 6︰4 were prepared and weighed on a Mettler Toledo AL204 Balance. Then homogeneous 12% PU/PVB solution was prepared by dissolving 2.4 g of PU and PVB in DMF and stirredconstantly with amagnetic stirrer(IKA C-MAG HS7) at standard room temperature for 24 hours. In order to quantify the changes in viscosity with the alternating ratios of PU︰PVB, a rotational viscometer(NDJ-9S) was used to couple with a disc spindle to measure the dynamic viscosity. During electrospinning, the solution flow rate from the syringe pumps(KDS100) was 1 mL/hr. The applied voltage was 15 kV. Electrospinning was performed on a rotating aluminium collector plate for 10 hrs using dual needles. The distance from the tip of the needle to the rotating collector was 15 cm. The collected electrospun matwith the aluminium foil were put into a vacuum dryer at standard room temperature for at least 30 hours.

1.3 三維PU/PVB納米纖維海綿

1.3 Fabrication of 3D PU/PVB nanofiber sponge

The prepared PU/PVB nanofiber mats were cut into short pieces and deposited into ethanol, and then homogenised in a high speed FJ200-SH dispersing homogeniser at a rotation speed of about 15 000 r/min for 30 min. Different short fibre dispersions were prepared by controlling the weight ratio of fibre nonwoven in the dispersion and the volume of the dispersion solvent. Then the fibre dispersion was centrifuged(Anke DZ-267-32), put into a mould and frozen at 0 ℃, and then was dried using a freeze-drier(Labonco RS232) for 48 h under a vacuum of 0.35 mbar. These steps were shown in Fig.1. The mass of the sponge was measured by a precise balance, and the volume of the sponge was calculated from the relative dimension of the fibrous 3D sponge. The density of the rectangular sponge obtained was determined by dividing the mass with the volume.

1.4 表 征

1.4 Characterization

To investigate the morphology and structure of PU/PVB nanofiber mat and 3D PU/PVB nanofiber sponge, the membranes were observed using a Scanning Electron Microscope(SEM, vltra55, Germany). The microstructure of the mat and nano-sponge were evaluated using X-ray diffraction(XRD, ARL XTRA, SWISS) and Fourier Transform Infrared spectroscopy(FTIR, AVATAR5700, USA). To determine the mechanical properties of the 3D sponge, universaltensile and compression tests were performed in the paper. The tensile tests were conducted by cutting out a 4 cm by 1.5 cm strips, which were then clamped onto the test apparatus. A force was applied to the

specimen by separating the testing machine crossheads. Data from the test were used to determine tensile strength and elongation of elasticity. The compression of 3D nano-sponge was investigated by a self-assembly experiment.

2 結果與分析

2 Results and analysis

2.1 PU/PVB納米纖維膜

2.1 PU/PVB nanofibre mats

The general morphologies of PU/PVB nanofiber mats with mass ratios of PU/PVB blends ranging from 8︰2, 7︰3, 6︰4 were shown in Fig.2.

The morphology of the fibre mats did not change much when varying the PVB/PU massratio 8︰2 to 7︰3. However, when the ratio reached 6︰4, the nanofiber cluttering style changed significantly, as shown in Fig.2(c). At this time, nanofibers were inhomogeneous lengthwise and they adhered together. Studies have shown that among all parameters, the viscosity of solution had a significant impact on fibre formation during spinning[29-30]. Increasing the PVB content while keeping the spinning solution at 12% would affect the spinnability of the solution because the viscosity of the solution dropped significantly(Tab.1).

At this time, the fibre diameter reduced with the increase of PVB, which could be explained by the reduction in viscosity of the solutions[30]. In general, the reduction of viscosity results in thinner fibres though it is very difficult to then eliminate the possibility of beading when the ratio of PU to PVB is 6︰4. Meanwhile, it was found that the obtained membranes changed from soft handle to a moderately rough at higher proportion of PVB, and the 40% PVB had the toughest handle.

2.2 納米纖維海綿

2.2 Fibrous nano-sponge

After building a PVB/PU short nanofiber dispersion in ethanol and setting it into a fibrous sponge via freeze drying, a self-assembled typical low weight nano-sponge was formed with significant pores, as illustrated by the images in Fig.3 and Fig.4, indicating the porosity of the sponges. PVB played a significant role in connecting short fibres with rarely short pieces of undispersed fibrous mats[31]. The optical photographand electron micrographsclearly showed points where bonds were formed between fibres and mats, forming a 3D nano-sponge complex structure. The self-assembling of the fibres was proved by the random distribution of the pores of different sizes across the nano-sponge structure. During the preparation of the 3D sponge, it was found out that when PVB content was less than 20%(PU︰PVB>8︰2), the 3D sponge with stable structure could not be formed, and short nanofibers or pieces were still separated with each other after freeze drying. At this time, it was concluded that the loose structure was due to the absence of PVB and the fact that short nanofibers or pieces could not be bound together. However, when PVB content was higher than 40%(PU︰PVB<6︰4), it was found that the nanofibers adhered together more significantly, while the characteristics of sponge porosity were weakened notably.

A significant property elaborated by the presence of PVB was that the PU/PVB sponge could resist the disintegration from manual handle, and can in fact stretch without breaking and show impressive recovery rates even compression strength. Due to the uniform fibre diameter and desirable pore structure, PVB/PUnanofibre matswith a PU and PVB ratio of 7︰3 were used in the following XRD and FTIR discussions.

During the preparation of 3D nano sponge, it was also found that the use of ethanol enhanced the bonding abilityof the PVB to the PU fibre structures, and yet the PU maintained the structural stability of the sponge, also highly promoted the elastic and compressional properties of the 3D nano-sponge. The 3D fibre showed a clear and strong tendency to bond across different sections due to PVB "crystallisation" during freeze drying. In this case, the the bond strength was strong enough to ignore heating, which nevertheless could be used to further improve the mechanical strength of PVBs at the glass transition temperature.

2.3 XRD分析

2.3 XRD analysis

X-ray diffraction(XRD) characterization provides information about structural parameters, such as crystallinity, strain, and crystal defects, as well as many other parameters[32]. Fig.5 shows the curving graph of PU and PU/PVB fibrous material and the different PVB to PU peaks. The graph had a sharp peak, indicating a diffraction at an angle approximately 2θ=20°.

The peak at 20° corresponded to the regular interplanar spacing corresponding to aromatic rings hard segment listed in the International Centre for Diffraction Data(ICDD). There was a shift in the position of the peak at 20°, indicating a decrease in the chain spacing. These effects indicated an increase in the crosslink that promoted the reduction of the d-spacing and the shift of the peak at 20°[33]. These peak shifts suggested there were some cross-linking patterns induced by the presence of PVB because of the general aromatic rings in PU diffract around 19°.

PVB is completely amorphous in nature[34], which has been proved by the X-ray diffraction pattern of PU/PVB obtained and shown in Fig.5 above. This X-ray diffraction patternexhibited the characteristics of amorphous PVB. In the XRD pattern of pure PU, there was a crystalline peak around 45°, but more peaks appeared as broadened peaks at approximately 43°, indicating the presence of highly amorphous clay structure in PVB.

2.4 FTIR結果

2.4 FTIR results

Fig.6 showed a full representation of the FTIR spectrum for PU, PVB and PU/PVB fibrous materials used in this research paper. The spectrum showed that the absorption bands and stretching vibrations were consistent with those of PU and PVB functional groups available in literatures[33-36]. These peaks were described and explained as follows.

At the absorption peak between 800 cm-1 to 1 500 cm-1, there was a peak for stretching vibration of C—O—C around 1 138 cm-1 in PVB(Fig.7), which also had peaks at 1 390 cm-1 and 1 635 cm-1, indicating the band stretching for O—H and CO respectively. Another band could be observed around 1 120 cm-1, while another was seen near 1 231 cm-1, indicating that the presence of C—N and C—H bands was consistent with the PU spectrum. Furthermore, there was an absorption band at 1 721 cm-1, representing the CO stretch in PU. The curves in Fig.6 strongly showed the presence of asymmetrical and symmetrical stretching vibration of C—H bonds at around 2 866 cm-1, 2 964 cm-1 and 2 983 cm-1. These were important absorption bands because their changing intensity which explained the crosslinking physical bonding of the overall 3D structure. Finally, there were two peaks as shown in Fig.8 at between 3 300 cm-1 to 3 450 cm-1, showing the stretching vibrations of N—H and O—H functional groups in PVB and PU. The peak intensities varied with the change in content of PU and PVB during the construction of the 3D edifice due to the presence of the polarity of functional groups at such band stretches in the PU, PVB and or PU/PVB polymers[33-36].

A notable manifestation of peak differences on the curves signaling interaction between PVB and PU could be seen in Fig.8, which differed in intensity ranging from 2 866 cm-1 to 2 983 cm-1. Despite the presence of the peaks at this range on the PVB spectrum, there was an interchanged peak size for asymmetric and symmetric C—H vibrations, which was also a prominent difference. PU/PVB membrane showed longer peaks while PU/PVB 3D model and PU membrane manifested shorter ones respectively. The peaks for PU/PVB(both membrane and 3D model) were analyzed, and the spectrum showed that the concentration of the C—H stretching vibration increased significantly, as shown by the increase in spectra intensity between 2 800 cm-1-3 000 cm-1 when compared to the PU membrane. The increase in the intensity proved that both PU and PVB existed in the fibrous membrane and 3D sponge. PU was the backbone of the structure, while PVB mainly functioned as a crosslinking agent.

The transformation of the PU/PVB membrane into a 3D structure with ethanol as a dispersing agent reduced the amount of PVB within the fibrous matrix, and yet controlled the dispersion. The subsequent washing and freeze dry method ensured that the dissolved PVB became a crosslinking agent when dried. The spectrum for PU/PVB 3D sponge showed that the peaks in the range of 2 800 cm-1-3 000 cm-1 were still in a range comparable to those of the PU/PVB membrane, showing noteworthy difference in peak intensity. There was a decrease in intensity when comparing fibrous 3D sponge to the fibrous membrane, yet still above the peak intensity of PU only membrane, suggesting that some PVB was lost along with the ethanol solvent during the washing process, but the remaining PVB was essential for the new strongly crosslinked fibre sponge. In contrast, the curves at 3 300 cm-1 to 3 450 cm-1 changed their shape by broadening or rather increasing the area under the curve in this case. This attribute was caused by the formation of strong hydrogen bonds between N—H and O—H molecules present in both PU and PVB polymers. The change in shape also explained a weakened polarity there in came due to the interactions between functional groups.

2.5 拉伸性能

2.5 Stretching performance

In a bid to understand how the sponge would react to different external forces in the form of stress and strain, PVB/PU nano-sponges with different mass ratios of PVB and PU were subjected to these forces on a tensiometer. The samples resembled strength as would be expected from their nature just as reported in other papers for aerogels and pure PVB and pure PU[17]. The main difference was that the depiction of strengths altered due to the presence of different mass ratios of PVB and PU used for sponge moulding.

The sponge with a PU/PVB ratio of 7︰3 exhibited the highest yield point to stress, as shown in Tab.2. A measurement of over 2 MPa for this model was recorded as it showed different deformations along its length. It exhibited a significant break above 100% strain, which would be consistent with the reported resistance of either PU or PVB electrospun membrane[11,23,27]. However, the breaking points of the models was less than the fibre mats[7], which was attributed to the presence of many randomly entangled short fibres in the sponge structure. The intensified test for 40% PVB model showedthat the plastic deformation indentations were less significant, while the yield stress was lower, which was attributed to the decreased PU and strengthened bonding between fibres.

2.6 壓縮實驗

2.6 Compression test

A manual compression recovery test was performed on the 3D fibrous sponges to show their recovery capabilities after being compressed by a force(Fig.9). The sample in Fig.9 had a weight of 0.076 5 g and an approximated volume of above 0.5 cm-3. Fig.9 showed that as soon as the fore was removed from the compressed sponge, it immediately recovered to original height. This phenomenon of instantaneous recovery to approximately the initial length could be observed even after repeated compressions. compared to other organic and inorganic building blocks for 3D sponge materials, the use of electrospun nanofibrous materials played a major role because of a better distribution of stress and strain on nanosized fibres.

3 結 論

3 Conclusions

The combination of polymeric compound for the fabrication of a stable and useful structure by taking advantage of their different properties is an extensive research field among many polymers. This research work provided a versatile 3D nano-sponge, which was prepared with the ratio of PVB to PU of 7︰3, presenting uniform nanofiber and desirable morphology. Meanwhile, the nano-sponge exhibited a high tensile strength of 2.2 MPa and notable extensibility with 175.5% elongation. It also could recover instantly after compression.

參考文獻:

[1]FATHONA I W, KHAIRURRIJAL, YABUKIA. One-step fabrication of short nanofibers by electrospinning: effect of needle size on nanofiber length[J]. Advanced Materials Research, 2014, 896: 33-36.

[2]TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology, 2006, 17(14): R89.

[3]LU W, SUN J, JIANG X. Recent advances in electrospinning technology and biomedical applications of electrospun fibers[J]. Journal of Materials Chemistry B, 2014, 2(17): 2369.

[4]SILL T J, VON RECUM H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29(13): 1989-2006.

[5]BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347.

[6]MISHRA R, MILITKY J, VENKATARAMAN M. Electrospun nanofibers[J]. Nanotechnology in Textiles, 2019, 2: 35-161.

[7]DONG Y, ZHENG Y, ZHANG K, et al. Electrospun nanofibrous materials for wound healing[J]. Advanced Fiber Materials, 2020, 2: 212-227.

[8]LI P, ZHANG Q, CHADYAGONDO T T, et al. Designing waterproof and breathable fabric based on polyurethane/silica dioxide web fabricated by electrospinning[J]. Fibers and Polymers, 2020, 21(7): 1444-1452.

[9]KIM, JONG, GIL, et al. Homogenized electrospun nanofiber reinforced microporous polymer sponge[J]. Chemical Engineering Journal, 2016, 306: 242-250.

[10]CHEN Z, JIN L, HAO W, et al. Synthesis and applications of three-dimensional graphene network structures[J]. Materials Today Nano, 2019, 5: 100027.

[11]WU Y, YI N, HUANG L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poissons ratio[J]. Nature Communications, 2015, 6: 6141.

[12]CHEN D R, CHANG X H, JIAO X L. Aerogels in the environment protection[J]. The Role of Colloidal Systems in Environmental Protection, 2014: 573-591.

[13]INGAVLE G C, LEACH J K. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering[J]. Tissue Engineering Part B-Reviews, 2014, 20(4): 277-293.

[14]CHEONG J Y, MAFI M, BENKER L, et al. Ultralight, structurally stable electrospun sponges with tailored hydrophilicity as a novel material platform[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18002.

[15]JI H, ZHAO R, ZHANG N, et al. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding[J]. NPG Asia Materials, 2018, 10(8): 749-60.

[16]DUAN G, JIANG S, JEROME V, et al. Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions[J]. Advanced Functional Materials, 2015, 25(19): 2850-2856.

[17]YANG S, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5: 5802.

[18]MALEKI H, WHITMORE L, HSING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A, 2018, 6(26): 12598-612.

[19]MEADOR M A B, CAPADONA L A, ORKLE L, et al. Structure property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels[J]. Chemistry of Materials, 2007, 19(9): 2247-2260.

[20]MEADORMAB, VIVODSL, MCCORKLE L, et al. Reinforcing polymer cross-linked aerogels with carbon nanofibers[J]. Journal of Materials Chemistry, 2008, 18(16): 1843-1852.

[21]AKDUMAN C, KUMBASAR E. Electrospun Polyurethane Nanofibers[M]. United Kingdom: In Tech Open, 2017.

[22]RUI C, CHEN H, KE Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications[J]. Colloids & Surfaces B Biointerfaces, 2010, 79(2): 315-325.

[23]CHUNG Y C, CHOI J W, MOON S, et al. Effect of cross-linking agent structure on the shape memory property of polyurethane block copolymer[J]. Fibers and Polymers, 2009, 10(4): 430-436.

[24]PENG L, ZHOU L, LI Y, et al. Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites-science direct[J]. Composites Science and Technology, 2011, 71(10): 1280-1285.

[25]XU Y, SHENG J, YIN X, et al. Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance[J]. Journal of Colloid and Interface Science, 2017, 508: 508-516.

[26]GU X, LI N, LUO J, et al. Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance[J]. Polymer Bulletin, 2018, 75(8): 3539-53.

[27]PEER P, STENICKA M, PAVLINEK V, et al. An electrorheological investigation of PVB solutions in connection with their electrospinning qualities[J]. Polymer Testing, 2014, 39: 115-21.

[28]ZHANG Min, SHENG Junlu, YIN Xia, etal. Polyvinyl butyral modified polyvinylidene fluoride breathable-waterproof nanofibrous membranes with enhanced mechanical performance[J]. Macromolecular Materials and Engineering, 2017, 302(8): 1600272.

[29]CHANG F C. The Effect of processing parameters on formation of lignosulfonate fibers produced using electrospinning technology[J]. Bioresources, 2016, 11(2): 4705-4717.

[30]RAY S S, CHEN S S, NGUYEN N C, et al. Electrospinning: aversatile fabrication technique for nanofibrous membranes for use in desalination[J]. Nanoscale Materials in Water Purification, 2019, 9: 247-273.

[31]LANGNER M, GREINER A. Wet-laid meets electrospinning: nonwovens for filtration applications from short electrospun polymer nanofiber dispersions[J]. Macromolecular Rapid Communications, 2016, 37(4): 351-355.

[32]BUNACIU A A, UDRITIOIU E G, ABOUL-ENEIN H Y. X-ray diffraction: instrumentation and applications[J]. Critical Reviews in Analytical Chemistry, 2015, 45(4): 289-299.

[33]TROVATI G, SANCHES E A, NETO S C, et al. Characterization of polyurethane resins by FTIR, TGA, and XRD[J]. Journal of Applied Polymer Science, 2010, 115(1): 263-268.

[34]PISTEK D, MERINSKA D, DUJKOVA Z, et al. The mechanical and optical properties of the PVB nanocomposites[C]//Proceedings of the 3rd WSEAS International Conference on Advances in Sensors, Signals and Materials. Faro, Portugal: World Scientific and Engineering Academy and Society(WSEAS), 2010: 26-29.

[35]BINTI K, HAJI BADRI K, MAISARA S, et al. FTIR spectroscopy analysis of the prepolymerization of palm-based polyurethane[J]. Solid State Technology, 2010, 18: 1-8.

[36]MARTN M, CENTELLES X, SOL A, et al. Polymeric interlayer materials for laminated glass: a review[J]. Construction and Building Materials, 2020, 230: 116897.

猜你喜歡
結構
DNA結構的發現
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
循環結構謹防“死循環”
論《日出》的結構
縱向結構
縱向結構
我國社會結構的重建
人間(2015年21期)2015-03-11 15:23:21
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
主站蜘蛛池模板: 激情视频综合网| 日本成人在线不卡视频| 亚洲天堂网在线观看视频| 久久五月天国产自| 伊人国产无码高清视频| 国产精品不卡片视频免费观看| 久久香蕉国产线| 国产一二三区视频| 欧美一级大片在线观看| 国产成人无码AV在线播放动漫| 成人久久18免费网站| 污视频日本| 亚洲欧洲一区二区三区| 亚洲无线视频| 亚洲天堂视频网站| 2019年国产精品自拍不卡| 亚洲日本中文字幕天堂网| 99热这里只有精品免费国产| www.99精品视频在线播放| 久草网视频在线| 欧美性天天| 国产剧情一区二区| 91小视频在线观看| 一级毛片免费高清视频| 99视频在线免费看| 亚洲无码不卡网| 久久超级碰| 亚洲性一区| 欧洲av毛片| 成人91在线| 久久亚洲综合伊人| 99视频精品在线观看| 免费高清自慰一区二区三区| 精品自窥自偷在线看| 欧美一区二区丝袜高跟鞋| 国产成人91精品| 亚洲精品动漫| 久久99国产乱子伦精品免| 精品国产99久久| 国产素人在线| 国产成在线观看免费视频 | 国产91线观看| 伊人久久久久久久| 日韩精品亚洲精品第一页| 国产高颜值露脸在线观看| 一区二区三区在线不卡免费| 亚洲一道AV无码午夜福利| 亚洲最大综合网| 欧美激情成人网| 国产成人精品第一区二区| 一级香蕉视频在线观看| 91精品国产自产91精品资源| 国产成人a毛片在线| 国产免费精彩视频| 婷婷六月综合网| 国产精品熟女亚洲AV麻豆| 99久久精品免费观看国产| 99精品视频在线观看免费播放 | 爆操波多野结衣| 精品三级网站| 精品自窥自偷在线看| 国产极品嫩模在线观看91| 欧美成a人片在线观看| 四虎国产在线观看| 色久综合在线| 综合色区亚洲熟妇在线| 亚洲免费人成影院| 欧美国产在线看| 亚洲αv毛片| 亚洲 欧美 日韩综合一区| 欧美精品一区二区三区中文字幕| 亚洲av色吊丝无码| 日韩一级二级三级| 日本免费精品| 无码有码中文字幕| 国产在线自在拍91精品黑人| 久久久久免费看成人影片| 国产99精品久久| 日本免费福利视频| 亚洲人成日本在线观看| 色香蕉影院| 一级毛片基地|